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Abstract
Improving the predictive capability of credit scoring models is always an active
area of research in the financial sector. Recognising the impressive effectiveness
of neural networks in different domains (such as computer vision and natural
language processing), various neural networks have been tested to potentially
improve loan default prediction on credit data. Nevertheless, a significant chal-
lenge emerges due to the predominantly tabular nature of credit data, which
is not well-suited to the structure and strengths of neural networks, hindering
their ability to surpass traditional machine learning models in credit scoring. To
overcome the challenge, we propose a novel data transformation method called
Tabular Image that converts tabular data into images to take advantage of the
powerful two-dimensional convolutional neural networks that perform extremely
well on images while mitigating the challenges tabular data poses to deep net-
works. The Tabular Image can convert tabular data into compact and resilient
images compared with existing transformation methods by creatively embedding
two crucial measures in credit scoring, the weight of evidence and information
value, in the image. Applications to three credit scoring benchmark datasets
suggest that simply training a two-dimensional convolutional neural network
with Tabular Image can provide state-of-the-art predictive performance. In addi-
tion, the advantage of our proposed method’s prediction is more evident in the
large dataset. Our innovative approach raises the possibility of leveraging two-
dimensional convolutional neural networks in credit scoring using a proper data
representation method. Furthermore, a flexible framework is provided to suit
various tabular datasets in other domains.

Keywords: Risk management, Credit scoring, Deep learning, Convolutional neural
networks, Tabular data
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1 Introduction
Credit risk management holds a prominent position in most financial institutions to
mitigate loan losses and optimise profit. Historically, financial institutions separated
default and non-default credit applicants by credit managers’ intuitive experience to
control credit risk (Lewis, 1992). However, as the total loans grew and the volume of
loan applications increased, credit managers needed a fast and accurate way to iden-
tify default credit applicants because even a fraction of percent of increment in default
rate may relate to a significant amount of loan losses (Baesens et al, 2003; Henley
and j. Hand, 1997; West, 2000). As a result, credit scoring was proposed to separate
default and non-default credit applicants by using prediction models to convert credit
applicants’ financial information into a score representing credit applicants’ creditwor-
thiness (Lewis, 1992). Durand (1942) was the first to use statistical models to separate
default and non-default credit applicants. After that, various statistical and machine
learning models such as logistic regression (Dumitrescu et al, 2022; Wiginton, 1980),
random forest (Brown and Mues, 2012; Wang et al, 2012), support vector machine
(Harris, 2015; Huang et al, 2007), and gradient boosting decision trees (Chang et al,
2018; Gunnarsson et al, 2021; Lessmann et al, 2015) were applied to identify more
accurate credit scoring models to achieve even small improvements in prediction accu-
racy. Despite the application of various statistical and machine learning models, it is
still challenging to identify a consistently superior approach for credit scoring tasks
(Dastile et al, 2020; Lessmann et al, 2015), so developing more accurate credit scoring
models continues to be one of the crucial goals of credit scoring research.

To meet this goal, an emerging area in credit scoring research is applying neural
networks to predict the probability of default. Because data used in credit scoring
is usually tabular data represented in one-dimensional (1D) format, previous studies
have tended to focus on MLP-like architectures (Baesens et al, 2003; Elhoseny et al,
2022; Hamori et al, 2018; Lessmann et al, 2015; West, 2000; Zhao et al, 2015) and 1D
convolutional neural networks (CNNs) (Kvamme et al, 2018; Huang et al, 2023; Qian
et al, 2023) that accept 1D format data as input. Although recent studies have explored
the possibility of using neural networks in credit scoring, the application of deep
networks is still a challenge because of the characteristics of tabular data, such as mixed
feature types (numerical, ordinal, and categorical), data sparsity (missing values), and
lack of robustness to uninformative features (Grinsztajn et al, 2022; Shwartz-Ziv and
Armon, 2022). In addition, MLPs and 1D CNNs suffer from the vanishing gradient
problem (Giles et al, 1992), thus making adding hidden layers to boost performance
difficult. These challenges led to the result that eXtreme Gradient Boosting (XGBoost)
was usually demonstrated to outperform neural networks for tabular data in credit
scoring and raise the necessity of exploring the possibility of applying other novel
neural networks (Gunnarsson et al, 2021).

So far, due to the nature of the tabular data, little attention has been paid to
the more advanced, well-developed, and powerful deep learning networks such as
two-dimensional (2D) CNNs. Compared to MLPs and 1D CNNs, 2D CNNs achieved
impressive results or even outperformed human experts in computer vision, recognition
and prediction, gaming, art imitation, etc. (Abdel-Hamid et al, 2014; Karpathy et al,
2014; Krizhevsky et al, 2017; LeCun et al, 2015; Mahbobi et al, 2023; Yuan et al, 2017).
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Furthermore, 2D Convolutional Neural Networks (CNNs) have an inherent capability
to capture high-level features automatically through stacking deep convolutional, pool-
ing, and activation layers. This aligns with the process of feature engineering, which is
a crucial and time-consuming step in building credit scoring. 2D CNNs can automate
this process, minimising the need for manual feature engineering that otherwise relies
heavily on expert knowledge and is resource-intensive.

This paper proposed a novel method to convert tabular data into images to utilise
powerful 2D CNNs that perform exceptionally well on homogeneous data (such as
images and videos) while mitigating the challenges neural networks meet when applied
to tabular data. We call our method Tabular Image, which transforms tabular data
into images based on the weight of evidence (WOE) (Siddiqi, 2012) and information
value (IV) (Hand, 2005). The results demonstrated that the proposed Tabular Image
training with a 2D CNN model performed better than its shallower counterpart, 1D
CNN and outperformed most prediction models trained on tabular data, indicating
the potential of Tabular Image and the power of 2D CNNs. Our proposed method
also outperformed 2D CNNs with other tabular data-image transformation methods,
showing Tabular Image can aid 2D CNNs in extracting signals in data, thus fur-
ther boosting the prediction performance. Meanwhile, transforming tabular data into
images with Tabular Image can enhance human-computer interaction. It provides an
intuitive understanding of complicated tabular data, thus helping credit managers gain
insight into data and identify suspicious loan applications.

The remainder of this paper is organised as follows. Section 2 reviews the deep
learning models used in credit scoring and techniques used to transform tabular data
into images. Section 3 describes the detailed processes of converting tabular data into
images. Section 4 describes the data preparation process, the details of models and the
evaluation metrics used in this study. Section 5 presents the results. The discussion is
presented in section 6. We then provide a conclusion with some future perspectives in
section 7.

2 Related works

2.1 Deep neural networks in credit scoring
As computing power and the volume of data continue to grow, the interest in applying
neural networks to credit scoring tasks increases. Extensive research has been con-
ducted regarding the application of fully connected neural networks in credit scoring.
Among various neural networks, multilayer perceptron (MLP), restricted Boltzmann
machine (RBM), and deep belief neural networks (DBN) have been mainly used to
construct credit scoring models (Dastile et al, 2020; Gunnarsson et al, 2021). For
example, Blanco et al (2013) fitted 14 MLP credit scoring models and compared these
models with linear discriminant analysis, quadratic discriminant analysis, and logistic
regression. The result showed that MLP credit scoring models provided higher accu-
racy and lower misclassification costs than traditional models. Tomczak and Zięba
(2015) applied classification RBMs to construct an explainable scoring table and pro-
vided high prediction performance. Luo et al (2017) applied deep belief networks,
which consist of a stack of RBMs, to construct a corporate credit scoring model. The
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prediction performance of the DBN provided the best performance compared with
logistic regression, MLP and support vector machine.

Besides fully connected neural networks, deep learning architectures that demon-
strated success in natural language processing (NLP) and computer vision (CV) have
been investigated, with the expectation of shedding some light on improving the pre-
diction accuracy of credit scoring models. Wang et al (2019) and Shen et al (2021)
applied Long Short-Term Memory (LSTM), a deep learning model commonly used in
NLP, on transaction data to improve the prediction accuracy. By combining LSTM
with data balancing techniques and attention mechanisms, their results showed a
noticeable improvement compared to traditional credit scoring models. Apart from
the success of recurrent neural networks, CNNs have also been tested in the credit
scoring domain. Kvamme et al (2018) used CNNs to predict mortgage default and
provided high prediction performance on transaction data. He and Fan (2021) con-
structed a CNN as a feature generation method and constructed an ensemble model
for default prediction, which significantly improved prediction performance. Although
these studies showed promising results in applying neural networks to credit scoring,
the prediction performance of neural networks in credit scoring is debatable.

On the one hand, some studies present evidence that neural networks can sur-
pass the performance of traditional models in credit scoring. West (2000) compared
five neural networks with five quantitative models and claimed that neural networks
achieve better performance than five statistical and machine learning models in credit
scoring tasks. Yu et al (2015) conducted a comprehensive review of the social credit
literature and pointed out that neural networks outperform statistical models in credit
risk detection tasks. Dastile et al (2020) systematically reviewed 74 articles ranging
from 2010 to 2018 and claimed that neural networks perform better than statistical
and machine learning models.

On the other hand, some literature suggests that the advantages of neural networks
are not always clear-cut. Baesens et al (2003) compared the performance of various
statistical, traditional machine learning and deep learning models and concluded that
the performance of logistic regression was not statistically different from neural net-
works. Lessmann et al (2015) compared 41 classifiers on eight credit scoring datasets
and observed that the prediction performance of random forest outperformed neural
networks. Gunnarsson et al (2021) compared MLP and DBN with logistic regression,
decision tree, random forest and XGBoost. The results showed that neural networks
did not outperform machine learning models, and XGBoost was the best method
among the models tested in this study.

2.2 Data transformation
Given the ongoing debate in the literature, it is evident that further investigation is
needed to better understand and enhance the applications of neural networks in credit
scoring. One way to utilise neural networks is to transform the tabular data into a
more homogeneous format (Borisov et al, 2022). By implementing this type of trans-
formation, researchers expect to be able to apply neural networks, such as 2D CNNs,
which perform extremely well for classification tasks on homogeneous data. To the
best of our knowledge, there is very limited research on data transformation in credit
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scoring. Hosaka (2019) proposed a data transformation method to utilise financial
ratios extracted from a company’s financial statements by transforming these ratios
into a grayscale image to predict bankruptcy. While this transformation method can
convert tabular data into images and utilise 2D CNNs, it does not accept categori-
cal features as input, which is required in other application areas such as individual
credit default prediction. Furthermore, financial ratios are features mainly used for
company bankruptcy prediction, making it difficult to extend this method to indi-
vidual credit default prediction datasets. Zhu et al (2018) proposed a hybrid model
using a relief algorithm as a feature selection tool and a 2D CNN to predict the prob-
ability of default. This study transformed tabular data into grey images to utilise 2D
CNNs. This study first applied discretisation to numerical features to convert them
into categorical features. It then reshaped features into binary vectors using one-hot
encoding (Hancock and Khoshgoftaar, 2020) and combined all features into a sparse
binary matrix, which can be considered a pixel matrix. The result showed that the
Relief-CNN yielded better prediction performance than random forest and logistic
regression. Similarly, Dastile and Celik (2021) presented attempts at applying a 2D
CNN to credit scoring by transforming numerical and categorical features into grey
images. This study first discretised numerical features and then converted both dis-
cretised numerical features and categorical features into a pixel matrix using one-hot
encoding. Although these two studies applied data transformation on tabular data,
the transformation technique they used, one-hot encoding, may exacerbate the "curse
of dimensionality" problem and create high-dimensional sparse feature vectors which
are composed of a large number of pixels not containing information (Borisov et al,
2022). As a result, a significant proportion of the image may be blank. Also, the trans-
formation method may generate large images when there is a considerable number of
features or a large number of categories in categorical features, which may require a
large amount of computer resources to train the CNN.

In contrast, data transformation is widely used in other fields. Sharma et al
(2019) proposed the DeepInsight method to transform RNA-seq data into images by
projecting the high dimensional data to a 2D space using feature similarity measur-
ing techniques and dimensionality reduction techniques, and its results outperformed
those of the random forest. Bazgir et al (2020) proposed the REFINE method to
convert unorganised tabular data into images based on the similarity between fea-
tures calculated by a Bayesian metric multidimensional scaling approach. The results
demonstrated that the method provided better predictive accuracy than conventional
models. Zhu et al (2021) proposed the IGTD method for converting tabular data into
compact images by assigning features to pixels based on the difference in pairwise dis-
tance rankings between features and assigned pixels. The result showed that the IGTD
method performed better than DeepInsight and REFINE on drug screening datasets.
Although methods proposed by Sharma et al (2019), Bazgir et al (2020), and Zhu et al
(2021) produced promising results, these methods were designed with the assumption
that data with strong feature similarities, such as RNA sequence, gene or drug data,
would be used, which may not be suitable for credit scoring datasets. Sun et al (2019)
proposed the superTML method to project features in the tabular data onto black-
and-white images and applied the method to four popular datasets available on the
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UCI Machine Learning Repository and the Kaggle platform. By projecting features
in the tabular data onto images, CNNs are able to learn the shape of numbers and
extract nonlinear features in the images.

3 Proposed Methodology
The goal of Tabular Image is to transform each sample of tabular data into an image
of Nh ×Nw pixels, where Nh and Nw denote the height and the width of the image,
respectively. Figure 1 shows the proposed transformation framework. Different from
images formed by pixels, tabular data usually contains a mix of numerical and cate-
gorical features. To convert tabular data into images, a measure is needed to convert
the values of the categorical features to numerical values. Also, the measure needs to
represent a feature’s ability to separate default and non-default credit applicants, as
this is the goal of building credit scoring models. Based on these two requirements,
we selected a classic data preprocessing method in credit scoring, the WOE trans-
formation (Siddiqi, 2012), in which the difference between the proportion of default
and non-default credit applicants for each bin replaces the values of the categorical
features.

After transforming categorical features into WOEs, the dataset was normalised
using z-score normalisation and assigned to pre-defined Nh×Nw images based on fea-
ture correlation and IVs. All 2D CNNs were trained and tested in this study using
five-fold cross-validation for a fair comparison. Note that to avoid misleading per-
formance caused by data leakage (Kaufman et al, 2012), the WOEs and IVs were
calculated based on the training set only and passed to the test set for the trans-
formation in every iteration in the five-fold cross-validation. In other words, the
default/non-default class information in the test set is not used in tabular data-image
transformation in the training.

3.1 Weight of evidence transformation
The first step of transforming original tabular data into images is to convert the values
in categorical features into WOEs. The same categorical value will be given the same
WOE. The WOE of categorical value i can be defined as:

WOEi = ln (
Nbi

NB
)− ln (

Ngi

NG
) (1)

where Nbi denotes the number of default (’bad’) credit applicants with categorical
value i, Ngi denotes the number of non-default (’good’) credit applicants with cat-
egorical value i, NB denotes the total number of default credit applicants in the
(training) dataset, and NG denotes the total number of non-default credit applicants
in the (training) dataset. A large WOE means a strong relationship exists between the
categorical value and the binary target variable in identifying default credit applicants.

3.2 Information value
When the calculation of WOEs is completed, the information value of each feature is
calculated to evaluate the feature importance in separating default and non-default
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Fig. 1 The overall framework of Tabular Image

credit applicants. IV of feature i can be defined as:

IV =

n∑
i=1

(
Nbi

NB
− Ngi

NG
) ∗WOEi (2)

where n denotes the number of categorical values in each feature. For numerical fea-
tures, values are first discretised into 10 bins using a quantile-based discretisation
(Thomas et al, 2017) before calculating the WOEs of each feature. Note that WOEs
of numerical features are only used to calculate IVs of numerical features.
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3.3 Feature arrangement
In the context of CNNs, the pixels in an image are spatially related, meaning pixels
next to each other represent relevant information or patterns. However, in tabular
data, such spatial relationships between features don’t always exist. Thus, the problem
in transforming Tabular Image is to allocate pixels in adjacent areas to represent
feature values in tabular data while the spatial locations of pixels are still meaningful
for tabular data features. In this study, we aim to maximise the Spearman correlation
among features in a certain block of the image to represent the spatial relationship
as Spearman correlation can assess both linear and non-linear correlations without
assuming the frequency distribution of the input variables (Hauke and Kossowski,
2011). Figure 2 provides an example illustrating the feature arrangement process. The
pseudocode of the feature arrangement method is shown in algorithm 1.

Fig. 2 Example: A simple illustration of the feature arrangement process of Tabular Image.

To achieve the goal, firstly, two input parameters, the height Nh and the width
Nw of a tabular image, are set up to define the image size. The product of these
two parameters defines the total number of pixels NP in a tabular image that can
be assigned to features in the transformation. The transformation then calculates the
total number of pixels assigned to each feature. We define Npi, the total number of
pixels assigned to each feature i, by finding the proportion of IV of each feature in the
sum of IV of all features:

Npi = floor(
IVi

IVT
∗ (NP −Nf )) + 1 (3)
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where floor(·) is a function that rounds numbers down to the nearest integer. NP

denotes the total number of pixels in a tabular image, Nf denotes the number of
features in the dataset, IVi denotes the IV of feature i, and IVT denotes the sum of
the IV of all features. The reason for using rounding down rather than rounding up is
that it can avoid the possibility of the sum of Npi of all features exceeding NP . Note
that each feature is assigned to at least one pixel.

After calculating Npi, a block size, Nb, is defined, indicating the adjacent area of the
image that needs to be maximised. Then, we calculate the Spearman correlation coeffi-
cient between features and the target variable (default or non-default class). A feature
name vector, V , is created by sorting the Spearman correlation coefficient between
features and the target variable in descending order. After creating V , we calculate
the Spearman correlation coefficient matrix S among features. Once the Spearman
correlation coefficient matrix is calculated, we start to maximise the absolute value of
the Spearman correlation coefficient in a block of size Nb × Nb (see line 9 to line 17
in Algorithm 1). The maximisation process can be seen and solved as a standard 0/1
integer programming problem1 (Han et al, 2019). To begin the maximisation process,
we assign the first Nw feature in V to the first row of the feature arrangement matrix
O to reduce the computation complexity of the optimisation process (Han et al, 2019).
Then, we iteratively find the feature names that should be used in each block from
the upper left to the bottom right of the feature arrangement matrix.

Algorithm 1 Feature arrangement method
1: Input: Spearman correlation coefficient matrix S;
2: Input: Feature name vector V , sorting by feature to target feature Spearman correlation

coefficient in descending order;
3: Input: The total number of pixels assigned to each feature Npi;
4: Input: block size Nb;
5: Initialise a block B with block size Nb ×Nb
6: Initialise total pixel number NP = Nh*Nw ;
7: Initialise Feature arrangement matrix O = ∅;
8: Determine the first row of O: O1,: = V1:Nw

9: for each block B in O do:
10: Find known feature names vector and their corresponding Spearman correlation coef-

ficient in the current block;
11: Find the number of unknown feature names in the current block;
12: Apply S to obtain a feature names vector that can maximise the sum of the Spearman

correlation coefficient in the current block;
13: Fill the current block B with the known feature names vector and the newly obtained

feature names;
14: If a feature is newly obtained in B, update the total number of pixels assigned to

each feature Npi = Npi − 1;
15: If the total number of pixels assigned to a feature Npi = 0, delete the corresponding

Spearman correlation coefficient in S;
16: If all Npi = 0, end the for loop.
17: end for
18: Output: a feature arrangement matrix O.

1Approximate optimal solutions can be found by using Python package pyomo with gurobi solver
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3.4 Tabular Image
Once WOEs, IVs and a feature arrangement matrix are calculated, a Tabular Image
transformation can be conducted. The pseudocode of Tabular Image is shown in algo-
rithm 2. The Tabular Image transformation first applies a z-score normalisation to
feature values to reach faster convergence. After the normalisation, the Tabular Image
transformation iteratively converts each tabular data sample into an image. Given a
tabular data sample, Tabular Image transformation iteratively creates a pixel matrix
for each feature by replacing feature names in the feature arrangement matrix with
the corresponding feature value. After creating a pixel matrix for all features, padding
is applied to the image using the median value of the pixel matrix if the number of
pixels assigned to all features is less than the initial NP . The number of paddings for
the image is calculated by

Npaddings = NP −
n∑

i=1

Npi (4)

where n is the total number of features. After padding, an image or a pixel matrix
that is transformed from one row (i.e., one sample) of the original tabular data is
created. After transforming every sample in the dataset, the tabular images can be
used as inputs to 2D CNNs. Figure 3a shows five default tabular images and figure 3b
shows five non-default tabular images.2 The grey level of a normalised pixel represents
the normalised value of the corresponding sample. Figure 3 shows clearly different
visual patterns between the default and non-default credit applicants, where the tab-
ular images of non-default credit applicants are darker than default credit applicants.
This also indicates that the transformation of tabular data into images might offer
unique opportunities for data visualisation and interpretation, such as the heat maps
in financial analysis (Argyriou et al, 2014), credit risk visualisation tools (Leite et al,
2018), etc., aiding in a quicker and more intuitive understanding of the credit data.

4 Experiments

4.1 Data Preparation
To evaluate the performance of Tabular Image on 2D CNNs, we applied the trans-
formation on a standard benchmark dataset named Taiwan Credit (TC)3 (Yeh and
Lien, 2009) which is widely used in credit scoring literature (Dumitrescu et al, 2022;
Jiang et al, 2023; Shi et al, 2024). Then, a more complex dataset, namely Home Credit
Default Risk (HC)4 (Anna Montoya and KirillOdintsov, 2018) was considered. Home
Credit is a multinational consumer finance provider focusing on instalment lending

2These default/non-default images are converted from samples in the later introduced Taiwan Credit
dataset that have the highest/lowest five probability of default calculated by our later constructed 2D CNN
for comparison purposes

3see: https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
4see: https://www.kaggle.com/c/home-credit-default-risk/overview
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Fig. 3 Example images of the TC dataset. (a) is images of five default samples in the TC dataset
generated by proposed Tabular Image. (b) is images of non-default samples in the TC dataset generated
by proposed Tabular Image.

Algorithm 2 Tabular Image
1: Input: a dataset with i features and n rows;
2: Discretised the numerical features using qcut in Python package pandas;
3: Transform features into WOEs;
4: Calculate IVi for each feature i;
5: Set the image height, Nh and the image width, Nw;
6: Initialise total pixel number NP = Nh*Nw ;
7: Calculate the number of pixels Npi assigned to each feature i;
8: Calculate the Spearman’s correlation between each pair of feature i and the Spearman’s

correlation between each feature and the target feature;
9: Set the block size Nb;

10: Optimise the feature arrangement matrix O based on the number of pixels Npi assigned
to each feature, Spearman’s correlation matrix and the block size Nb;

11: Initialise Ntotal =
∑n

i=1 Npi;
12: Applies the z-score normalisation to the dataset;
13: for row i, i = [1, 2, ..., n] in the dataset do
14: Initialise pixel matrix Pi = O
15: Replace feature names in Pi with the feature’s corresponding numerical value;
16: Replace Padding in Pi with the median value in the pixel matrix;
17: end for
18: Output: a pixel matrix list P1, P2, ..., Pn.

primarily to borrowers with little or no credit history, adding to the data’s complex-
ity. Finally, another complex dataset, namely Fannie Mae (FM)5 was selected. Fannie
Mae is a government-sponsored enterprise that mainly focuses on mortgage loans in
the US. We define a loan as default if a loan is more than 90 days past the due date
(DPD)6 based on major financial standards such as Basel II and IFRS 9 (Mushava

5see: https://capitalmarkets.fanniemae.com/credit-risk-transfer/single-family-credit-risk-transfer/fan
nie-mae-single-family-loan-performance-data

6We consider the loan as default even if the loan is cured after 90 DPD
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and Murray, 2022). The original dataset contains more than ten million loan records.
Due to the computing resource limitation, stratified sampling was performed to ran-
domly sample data from a relatively stable economic period from 2009 to 2016 (Chen
et al, 2021). Features that contain 99% or more missing values are dropped. The
details of the three datasets are shown in Table 1. All the datasets are imbalanced,
which matches real-world situations in a credit scoring context, as defaulting credit
applicants are far fewer than non-defaulting ones. The HC and FM datasets present
significant challenges, particularly due to their large sample sizes and notably lower
default rates. The HC dataset, in particular, poses additional complexities with its
large feature sizes and samples primarily belonging to the unbanked population.

The complexity and real-world applicability of these datasets make them a rigorous
testing ground for different models. In this context, even a modest improvement in
performance is significant and may lead to huge economic benefits (Blöchlinger and
Leippold, 2006).

Table 1 Information of credit datasets used in this study

Dataset Sample size No. of features Default samples Default rate
TC 30000 23 6636 22.1%
HC 307511 120 24825 8.1%
FM 300000 36 925 0.3%

We separately applied the Tabular Image transformation on TC, HC and FM
datasets to generate their tabular images. The size of each image was set to 32× 32 =
1024 pixels with a block size 3× 3 pixels7.

A standard pre-processing method, as detailed by Gunnarsson et al (2021), was
applied when using tabular data as input for logistic regression, support vector machine
(SVM), decision tree (DT), random forest, Adaptive Boosting (AdaBoost), Gradient-
boosted decision trees (GBDT), XGBoost, MLP, and 1D CNN. First, categorical
features were transformed into WOEs, with missing values being regarded as separate
categorical values. Then, missing values in numerical features were imputed with their
median values. After processing missing values, random oversampling was applied to
the training set, a technique proven effective in addressing data imbalance issues in
the credit scoring field (Jiang et al, 2023). After that, features were standardised using
z-score normalisation.

For comparison purposes, we also transformed the TC, HC and FM datasets into
images using the One-hot (Dastile and Celik, 2021) and DeepInsight (Sharma et al,
2019) transformation methods. For One-hot transformation, we first discretised numer-
ical features using the quantile-based discretisation method, akin to the Tabular Image
approach. Then, sparse binary pixel matrices (Dastile and Celik, 2021), which are
matrices consisting of values 0 and 1, were created to represent the one-hot encoding
of each feature. Features with IV larger than 0.1 were selected, as suggested by Dastile
and Celik (2021). The image size was resized to 32×32 as the original image size does
not meet the minimum input requirement of the 2D CNN used. For the DeepInsight

7The block size in our model is tuned as a hyper-parameter. A block size of 3 × 3 is optimal for our study
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transformation, we first pre-process tabular data using the method suggested by Gun-
narsson et al (2021). After this, tabular data was transformed into images with a size
of 32× 32 pixels.

4.2 Models Construction
This study constructed ten prediction models8, including logistic regression (Wig-
inton, 1980), SVM (Cortes and Vapnik, 1995), DT (Breiman, 1984), random forest
(Brown and Mues, 2012; Wang et al, 2012), AdaBoost (Freund and Schapire, 1997),
GBDT (Friedman, 2001), XGBoost (Lessmann et al, 2015), MLP (Gunnarsson et al,
2021), 1D CNN (Shwartz-Ziv and Armon, 2022), and a 2D CNN named ConvNeXt
(Woo et al, 2023). Logistic regression was selected as an industry standard. SVM and
DT were chosen as benchmark individual classifiers. Random forest was chosen as a
benchmark bagging ensemble classifier as suggested by Lessmann et al (2015), along
with two mainstream boosting ensemble models, AdaBoost and GBDT (Shi et al,
2024). XGBoost was regarded as the state-of-the-art ensemble classifier in this study
as it yields superior performance among machine learning models (Gunnarsson et al,
2021; Grinsztajn et al, 2022). As 2D CNNs are not suitable for tabular data (Damri
et al, 2023), we utilised a 1D CNN and an MLP to analyse the performance of neu-
ral networks on tabular data. ConvNeXt was selected to train our proposed Tabular
Image because it is a state-of-the-art 2D CNN architecture and serves as a backbone
of advanced 2D CNNs (Woo et al, 2023). Details and hyper-parameter setting of each
model are presented in the following paragraphs.

The ConvNeXt architecture is proposed by Woo et al (2023), which is a state-of-
the-art 2D CNN architecture upgraded from ResNet (He et al, 2016). By introducing
shortcut connections (He et al, 2016), ResNet-like architecture mitigates the vanish-
ing gradient problem when the depth of CNN increases to make the construction of
very deep CNN possible and performs remarkably well. Furthermore, the depthwise
convolution and global response normalisation (GRN) layers in ConvNeXt allow it to
pay attention to specific areas of an image, which works similarly to feature selection,
an important step in credit scoring.

We used the Nesterov stochastic gradient descent as the optimiser with a momen-
tum of 0.9. Binary cross entropy was selected as the loss function. The batch size was
set to 128 for the TC dataset and 1024 for the HC dataset. The learning rate was ini-
tialised as 0.001 for TC and HC and 0.0001 for the FM dataset. The initial learning
rate was divided by ten every ten epochs during training to avoid overfitting. Early
stopping was also used to avoid overfitting by stopping the training process when the
AUC of the validation set stopped increasing. A patient of five was set to avoid local
minima.

The architecture of the 1D CNN is similar to LeNet-5 (LeCun et al, 1989), com-
prising one input layer, two 1D convolutional layers with ReLU activation function,
two average pooling layers, two fully connected layers and one output layer. The batch

8For Logistic regression, SVM, DT, Random forest, AdaBoost, GBDT and MLP, we used the implemen-
tation from a Python machine learning library called Scikit-Learn (see: https://scikit-learn.org/). For
XGBoost, we used the XGBoost library (see: https://xgboost.ai/) in Python. For 1D and 2D CNNs, models
were constructed using Pytorch (see: https://pytorch.org/).
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size, optimiser, and loss function were set identically to ConvNeXt. The learning rate
was initialised as 0.1 and divided by ten every ten epochs.

Also, a 5-layer MLP was constructed to evaluate the effect of fully connected
artificial neural networks with tabular data. The ReLU activation function was used in
each hidden layer. The optimiser and loss function were set identically to ConvNeXt.
The batch size was set to 200 for all datasets.

4.3 Hyper-parameter tunning
To guarantee a fair and rigorous comparison among the various machine learning mod-
els, including ours, we conducted an extensive hyper-parameter tuning process for each
model to achieve their optimal performance. This involved a meticulous grid search to
identify the best hyper-parameters for each model. The hyper-parameter search space
is shown in Table 2. The chosen values of each model were either recommended by lit-
erature (e.g. Gunnarsson et al (2021)) or derived from our own exploratory analysis.
This thorough approach to tuning ensures that the performance results presented are
the best possible for each model. Consequently, even slight improvements achieved by
our model carry significant weight, underlining its effectiveness compared to others.

4.4 Evaluation metrics
This study evaluates a model’s overall performance and the maximum ability to sepa-
rate default and non-default credit applicants using three metrics that are commonly
used in credit scoring (Baesens et al, 2003; Lessmann et al, 2015), the area under the
receiver operating characteristic curve (AUC), the Kolmogorov-Smirnov statistic (KS)
and the H-measure. The AUC is a metric that evaluates the overall discrimination
ability of a model by measuring the area under the receiver operating characteristic
(ROC) curve. In credit scoring tasks, it is equivalent to the probability that the credit
score of a randomly chosen default credit applicant is higher than a randomly chosen
non-default credit applicant (Lessmann et al, 2015). Since the AUC considers a model’s
global performance, it assumes that all thresholds are equally possible to use as cutoff
points in credit scoring, which is not plausible in practice (Hand, 2005). Because of
this, it is also essential to find the cutoff point that can maximise the distance between
default and non-default credit applicants in order to evaluate the maximum ability of
a model to separate default and non-default credit applicants. Therefore, the KS was
selected to concentrate on measuring the maximum distance between default and non-
default credit applicants that a model can separate (i.e. the KS point). The H-measure
(Hand, 2009) is a coherent alternative metric compared to the AUC. It is equivalent
to the percentage improvement of the expected minimum loss a classifier gains com-
pared to a classifier that randomly assigns samples to classes. H-measure allows us to
specify a misclassification cost during evaluation, which is essential since misclassify-
ing a default borrower to non-default is considered a more severe case in credit scoring
applications. In this study, the misclassification cost was set to the number of default
samples divided by the number of non-default samples (Hand and Anagnostopoulos,
2014). Lastly, these three metrics, the AUC, the KS and the H-measure, are robust
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Table 2 Hyper-parameter tuning grid

Number of Models
need to be search

Hyper-parameters Grid range

Logistic regression 1 - -

SVM 6 C 0.1, 1, 10
Gamma 1/(n ∗ V ar(X)), 1/n

DT 54 Minimum number of
samples for each split

2, 3, 4, 5, 6, 7, 8, 9, 10

Minimal cost-
complexity pruning

0, 0.1, 0.2, 0.3, 0.4, 0.5

Random forests 30 Number of trees 100, 250, 500, 750, 1000
Number of features

√
n, log2(n)

Ratio of samples to be
selected

0.5, 0.75, 1

AdaBoost 24 Number of gradient
boosted trees

50, 100, 150, 200, 300,
500

Learning rate 0.1, 0.2, 0.3, 0.4

GBDT 216 Number of gradient
boosted trees

50, 100, 150, 200, 300,
500

Maximum tree depth 1, 2, 3
Learning rate 0.1, 0.2, 0.3, 0.4
Ratio of samples to be
selected

0.5, 0.75, 1

XGBoost 216 Number of gradient
boosted trees

50, 100, 150, 200, 300,
500

Maximum tree depth 1, 2, 3
Learning rate 0.1, 0.2, 0.3, 0.4
Ratio of samples to be
selected

0.5, 0.75, 1

MLP 253 Number of hidden
units in each layer

5, 10, 15, 20, 25, 40, 100

Number of layers 1, 5
Learning rate 0.001, 0.0001, 0.00001
Strength of the L2 reg-
ularization

0, 0.001. 0.01, 0.1

Tabular Image 3 Block size 2, 3, 4
1MLPs that have a growing number of hidden units in layers were not taken into account as they
tend not to generalise well.

toward data imbalance (Lessmann et al, 2015), which is vital since the datasets used
in this study show various degrees of data imbalance.
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5 Results

5.1 Distribution analysis of tabular data and tabular images
To investigate the effectiveness of Tabular Image, we plotted three mean pixel value
density plots and three mean tabular data value density plots by using tabular images
and tabular data converted from samples in the test set of the TC, HC, and FM
datasets. Figure 4b, 4d, and 4f are three mean pixel value density plots of the TC, HC,
and FM datasets, respectively. The range of the X-axis in Figure 4b, 4d, and 4f is from
0 (black pixels) to 255 (white pixels), which indicates the pixel value range of grayscale
images. Figure 4a, 4c, and 4e are three mean tabular data value density plots of the TC,
HC, and FM datasets, respectively. The range of the X-axis in Figure 4a, 4c, and 4e is
from 0 to 1, which indicates the tabular data value after min-max normalisation. The
distribution of non-default and default samples is significantly overlapped in Figure
4a, 4c, and 4e, indicating the difficulty in distinguishing these two distributions using
raw tabular data. However, it is apparent that after being transformed by Tabular
Image, the separation of the distribution of non-default and default samples is more
pronounced. Specifically, in the transformed tabular images, the majority of pixels in
non-default tabular images are distributed in the left part of the X-axis, which means
they are generally darker than those in the default tabular images, which aligns with
the observation of Figure 3 in section 3.4. The more pronounced separation between
the distribution of non-default and default samples further demonstrated the power
of Tabular Image, indicating the effectiveness of our method.

5.2 Comparison of 2D CNN with machine learning models
To better evaluate the discriminatory performance of the Tabular Image, we imple-
mented a stratified five-fold cross-validation process to ensure the reliability of the
results. In each iteration, one fold was reserved as the test set, which had not been pre-
viously encountered by the model, thereby evaluating the performance of the model.
For the other four folds, we used 80% of the samples as the training set and the remain-
ing 20% of the samples as the validation set for hyper-parameter tuning. We first
evaluated traditional prediction models with original tabular data, including XGBoost,
Random forest, Logistic regression, and MLP, as a baseline. Those baseline models tell
us how good the performance can be with the original tabular data. Then we used our
proposed Tabular Image with a ConvNeXt. Because ConvNeXt cannot accept tabular
data as input, we also ran a 1D CNN on the original tabular data to examine the effect
of the CNN when using tabular data. In order to discuss the effects of different tab-
ular data-image transformation methods on prediction performance, we also applied
the One-hot transformation (Dastile and Celik, 2021) and DeepInsight (Sharma et al,
2019) on ConvNeXt, respectively. Moreover, we also ran the Tabular Image with dif-
ferent image sizes and allocation methods to assess the robustness of our proposed
method.
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Fig. 4 The density plot of mean pixel values of tabular images and the density plot of mean tabular
data value for the test set in the TC, HC, and FM datasets. The range of the X-axis in Figure 4b, Figure
4d, and Figure 4f is from 0 (black pixels) to 255 (white pixels), which indicates the pixel value range of
grayscale images. The range of the X-axis in Figure 4a, 4c, 4e is from 0 to 1, which indicates the tabular
data value after min-max normalisation.

5.2.1 Performance of 2D CNN and machine learning models

We first compared 2D CNN using tabular images with traditional prediction models.
Tables 3, 4 and 5 present the average test set AUC, H-measure, KS, and their corre-
sponding standard deviations from five-fold cross-validation for each prediction model
on the TC, HC and FM datasets, respectively.
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On the smaller TC dataset, with the proposed Tabular Image, a 2D CNN
outperformed all individual classifiers, including its 1D counterpart, 1D CNN, by
approximately 1% to 20% in terms of AUC and H-measure. Note that 1D CNN per-
formed only slightly better than the weakest logistic regression in terms of AUC and
H-measure. These results indicated that a 2D ConvNeXt could utilise 2D kernels to
better capture features in the data after transforming tabular data into images than
1D CNN that extracts signals in 1D tabular data with 1D kernels. Meanwhile, as
an individual classifier, our method outperformed the ensemble benchmark classifier,
random forest, on all evaluation metrics and achieved similar results compared to the
state-of-the-art GBDT and XGBoost. These results indicate that our method captured
linear and non-linear relationships in the data better after transforming tabular data
into images than neural networks directly using tabular data as input. Our results
also confirmed the findings in Gunnarsson et al (2021) that XGBoost can outperform
other benchmark models with traditional tabular data on small datasets.

On the HC dataset, which has a much larger sample size and more challenging test-
ing conditions, the ConvNeXt with tabular images outperformed individual classifiers
by approximately 1% to 22% in terms of AUC and H-measure. Notably, our method
even outperformed the ensemble classifiers, including the state-of-the-art GBDT and
XGBoost, across all evaluation metrics. It becomes even more pronounced regarding
the H-measure, particularly with an increment of 1.39%, whereas other benchmark
models suffered a decrease ranging from 0.5% to 21.1% compared to GBDT and
XGBoost.

The FM dataset, which is large and extremely imbalanced, presented a different
challenge. Again, the ConvNeXt with tabular images outperformed individual classi-
fiers with an increase of approximately 5% to 29% in terms of AUC and H-measure.
What stands out in this table is that our method outperformed the GBDT and
XGBoost across all evaluation metrics. The improvement becomes even more pro-
nounced regarding the H-measure with an improvement of 4.37% from GBDT and
5.68% from XGBoost.

To further investigate the predictive performance of our method, we particularly
analyse subprime borrowers9 in the FM dataset. Subprime borrowers are considered
riskier for a lender and difficult to predict. Thus, a model that can perform well on sub-
prime borrowers can be considered more advanced and help reduce loan loss. Similar
to the previous results format, Table 6 shows the performance of each prediction model
on subprime samples. We can see that ConvNeXt with tabular images outperformed
all individual and ensemble classifiers in terms of AUC, H-measure, and KS with an
improvement of approximately 8% to 21%, 22% to 46%, 0.20 to 0.35, respectively.

The success of our model in those datasets highlights the effectiveness of our data
transformation method, indicating a higher level of robustness. On the one hand, our
method adapts better to varying data complexities and sizes, which is crucial in prac-
tical applications (Grinsztajn et al, 2022). On the other hand, with the Tabular Image,
ConvNeXt can better extract both linear and non-linear relationships in a complicated
dataset, making it more powerful in prediction, demonstrating the effectiveness of the

9A rule of thumb is that a subprime borrower is one who has a FICO score lower than 670. See
https://www.experian.com/blogs/ask-experian/what-is-subprime/
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proposed Tabular Image. Interestingly, the performance of 1D CNN with tabular data
is worse than that of logistic regression in the HC and FM datasets, with a decrease
of more than 3% across all three metrics, indicating 1D CNN does not have sufficient
ability to extract information in such large-scale, challenging datasets. In contrast, by
converting tabular data into images, we unlock the full potential of the 2D CNN and
identify an improvement of approximately1%− 5% across all three metrics compared
to the classic logistic regression model. This further emphasises the transformative
impact of our Tabular Image, showcasing its unique contribution to advancing the
capabilities of 2D CNNs in credit scoring.

Although we mainly focus on predictive performance, we noticed that the train-
ing time of ConvNeXt and the conversion time of Tabular Image are relatively short.
It took less than ten epochs for a ConvNeXt trained on the TC dataset to converge,
with a training time of less than two minutes on two P100 GPUs. The model trained
on the HC and the FM datasets took about ten epochs to converge, with a train-
ing time of less than 15 minutes on two P100 GPUs. As a complicated dataset with
more noise and samples, the increase in training time in the HC and the FM datasets
was expected, but one can easily reduce the training time by using multiple GPUs or
a more advanced one10. The Tabular Image involves a feature arrangement step, as
described in Algorithm 1, and a tabular data-to-image conversion step, as described
in Algorithm 2. Similar to tabular data transformation techniques, such as normalisa-
tion in the preprocessing step, the feature arrangement step is a one-time calculation
in order to generate a feature arrangement matrix. The feature arrangement matrix
can be saved and used directly in the transformation of incoming data to reduce the
computational cost. For the tabular data-to-images conversion step, the time complex-
ity is linear O(n) since there is only a single loop within the tabular data-to-image
conversion step. In our empirical evaluations, the practical runtime of the feature
arrangement step was less than three minutes for all the datasets considered in this
study, with the use of an Apple M1 CPU. The total runtime of the tabular data-to-
images conversion step was less than 15 seconds for the small TC dataset and less
than four minutes for the larger HC and FM datasets, using the same CPU. This
is a reasonable and manageable trade-off considering the significant improvement in
predictive performance. Moreover, it is feasible to implement and further reduce the
computational cost in real-world applications with the use of advanced CPUs. The
training time of the ConvNeXt model is also reasonable (e.g., minutes rather than sec-
onds compared to traditional XGBoost), especially considering the potential to take
advantage of the latest developments in both hardware and software that allow for
faster training processes fully optimised and supported for 2D CNNs. Such scalability
and efficiency of our proposed method indicate the potential for real-world application
at scale (Xia et al, 2020). Because of the thriving online loan applications, the number
of loan applications has increased exponentially compared to traditional offline lend-
ing. Thus, more samples can be used to train credit scoring models. It is important
to consider a more effective approach to using large datasets in order to keep up with
the changing trends in lending services. Therefore, the slight and manageable increase

10We observed a reduction of 87% of the training time to less than two minutes as we tested on one
Nvidia L40s GPU compared to training on two P100 GPUs.
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in computational cost is outweighed by the enhanced predictive performance of the
proposed Tabular Image and its subsequent advantages.

Table 3 The average (standard deviation) test set AUC, H-measure, and KS in five-fold
cross-validation for each prediction model and the 2D CNN with tabular images: TC dataset.

Model AUC H-measure KS
Individual classifier Logistic Regression 76.51% ± (0.83%) 27.61% ± (2.06%) 0.4160 ± (0.0224)

SVM 76.37% ± (1.14%) 26.99% ± (2.18%) 0.4154 ± (0.0209)
DT 63.09% ± (0.61%) 8.95% ± (0.71%) 0.2452 ± (0.0115)
MLP 77.12% ± (0.71%) 28.01% ± (1.54%) 0.4180 ± (0.0176)
1D CNN 76.80% ± (0.83%) 27.85% ± (1.67%) 0.4214 ± (0.0171)

Ensemble classifier Random Forest 77.14% ± (0.88%) 28.02% ± (1.87%) 0.4177 ± (0.0168)
AdaBoost 77.50% ± (0.92%) 28.25% ± (1.98%) 0.4204 ± (0.0201)
GBDT 78.00% ± (0.92%) 29.09% ± (1.90%) 0.4319 ± (0.0206)
XGBoost 77.99% ± (0.89%) 29.14% ± (1.84%) 0.4307 ± (0.0206)

Proposed method ConvNeXt 77.98% ± (1.03%) 28.88% ± (2.08%) 0.4281 ± (0.0236)

Table 4 The average (standard deviation) test set AUC, H-measure, and KS in five-fold
cross-validation for each prediction model and the 2D CNN with tabular images: HC dataset.

Model AUC H-measure KS
Individual classifier Logistic Regression 73.72% ± (0.97%) 17.65% ± (1.32%) 0.3544 ± (0.0147)

SVM 57.74% ± (2.17%) 2.85% ± (1.19%) 0.1181 ± (0.0296)
DT 53.40% ± (0.66%) 1.29% ± (0.36%) 0.0675 ± (0.0126)
MLP 73.96% ± (0.31%) 17.87% ± (0.41%) 0.3589 ± (0.0056)
1D CNN 70.61% ± (3.58%) 13.66% ± (4.83%) 0.3056 ± (0.0530)

Ensemble classifier Random Forest 74.06% ± (0.22%) 18.43% ± (0.52%) 0.3611 ± (0.0044)
AdaBoost 74.04% ± (1.03%) 18.12% ± (1.61%) 0.3573 ± (0.0158)
GBDT 74.57% ± (0.85%) 18.76% ± (1.36%) 0.3653 ± (0.0134)
XGBoost 74.28% ± (0.98%) 18.31% ± (1.58%) 0.3600 ± (0.0148)

Proposed method ConvNeXt 75.06% ± (0.36%) 19.70% ± (0.72%) 0.3729 ± (0.0093)

Table 5 The average (standard deviation) test set AUC, H-measure, and KS in five-fold
cross-validation for each prediction model and the 2D CNN with tabular images: FM dataset.

Model AUC H-measure KS
Individual classifier Logistic Regression 87.15% ± (1.01%) 43.56% ± (2.30%) 0.5962 ± (0.0157)

SVM 80.86% ± (2.29%) 34.59% ± (3.25%) 0.4945 ± (0.0338)
DT 74.63% ± (0.84%) 26.17% ± (1.59%) 0.4926 ± (0.0168)
MLP 85.01% ± (0.86%) 37.85% ± (2.00%) 0.5558 ± (0.0256)
1D CNN 84.45% ± (1.70%) 36.83% ± (3.67%) 0.5572 ± (0.0328)

Ensemble classifier Random Forest 89.92% ± (0.56%) 49.44% ± (1.61%) 0.6439 ± (0.0086)
AdaBoost 88.59% ± (1.63%) 46.74% ± (2.65%) 0.6321 ± (0.0340)
GBDT 90.12% ± (2.16%) 50.68% ± (4.03%) 0.6446 ± (0.0483)
XGBoost 89.43% ± (3.87%) 49.19% ± (6.43%) 0.6434 ± (0.0787)

Proposed method ConvNeXt 91.75% ± (1.15%) 55.05% ± (3.21%) 0.6827 ± (0.0355)

5.2.2 Bayesian analysis

Bayesian correlated t-tests (Benavoli et al, 2017) were performed to test the statisti-
cal validity of the difference for evaluation metrics used in this study. It evaluates the
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Table 6 The average (standard deviation) test set AUC, H-measure, and KS in five-fold
cross-validation for each prediction model and the 2D CNN with tabular images: Subprime samples
in the FM dataset.

Model AUC H measure KS
Individual classifier Logistic Regression 79.21% ± (4.81%) 29.13% ± (7.04%) 0.4937 ± (0.0662)

SVM 76.50% ± (5.30%) 28.01% ± (9.64%) 0.4401 ± (0.0689)
DT 69.82% ± (4.55%) 14.15% ± (5.53%) 0.3963 ± (0.0910)
MLP 76.10% ± (4.70%) 24.81% ± (4.79%) 0.4481 ± (0.0670)
1D CNN 80.34% ± (3.65%) 31.87% ± (4.94%) 0.5139 ± (0.0596)

Ensemble classifier Random Forest 84.53% ± (2.17%) 37.71% ± (5.16%) 0.5498 ± (0.0485)
AdaBoost 80.84% ± (1.79%) 30.98% ± (2.39%) 0.5213 ± (0.0473)
GBDT 83.13% ± (4.87%) 38.06% ± (8.17%) 0.5329 ± (0.0753)
XGBoost 83.45% ± (2.59%) 35.95% ± (4.01%) 0.5139 ± (0.0596)

Proposed method ConvNeXt 91.06% ± (5.20%) 60.32% ± (16.94%) 0.7487 ± (0.1256)

mean difference of evaluation metrics produced by cross-validation on a single dataset
between two models. We consider two models to be practically equivalent when the
mean difference of AUC and H measure is less than 0.5%, and the mean difference of
KS is less than 0.005 for a dataset. Since larger and more challenging datasets are con-
sidered in this study, a threshold of 0.5% for the AUC and H measure and a threshold of
0.005 for KS is more appropriate as the difficulty of improving predictive performance
increases. Furthermore, due to the recent large scale of the loan portfolio in finan-
cial institutions (Cornelli et al, 2023), even a minor improvement can substantially
reduce loan losses, leading to an optimised loan portfolio. Thus, the region of practical
equivalence (ROPE) is defined as 0.005. Bayesian correlated t-tests are then used to
compare 2D CNN with Tabular Image and each benchmark model. Each test produces
three posterior probabilities: the posterior probability P (2D CNN) that 2D CNN with
Tabular Image performs practically better than a benchmark classifier; the posterior
probability P (ROPE) that the two classifiers being practically equivalent; the poste-
rior probability P (Benchmark) that a benchmark classifier performs practically better
than the 2D CNN with Tabular Image. We consider the result as significant if one of
the three probabilities exceeds 95%, along with introducing posterior odds by comput-
ing o(2D CNN, Benchmark) = P (2D CNN)/P (Benchmark), o(ROPE, 2D CNN) =
P (ROPE)/P (2D CNN), and o(ROPE,Benchmark) = P (ROPE)/P (Benchmark) to
avoid limited dichotomous thinking when evaluating the results (Gunnarsson et al,
2021).

Figure 5 shows the results for 2D CNN with Tabular Image compared with each
of the benchmark models for the TC dataset. For individual classifiers, as shown in
Figure 5, 2D CNN with Tabular Image significantly outperformed Logistic regres-
sion, SVM, DT, and 1D CNN with a probability between 95.82% and 100%. There is
also strong evidence to suggest that 2D CNN with Tabular Image performed practi-
cally better than MLP based on all three metrics considered with a posterior odd of
o(2D CNN, Benchmark) between 6.9 and 94.3. Regarding ensemble models, 2D CNN
with Tabular Image performed significantly better than the random forest in terms of
AUC with a probability of 98.19%. In addition, strong evidence suggests that 2D CNN
with Tabular Image performed practically better than AdaBoost based on the AUC
(o(2D CNN, Benchmark) = 32.1) and H-measure (o(2D CNN, Benchmark) = 44.6).
Furthermore, 2D CNN with Tabular Image performed equally to the state-of-the-art
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GBDT and XGBoost based on all three metrics considered in support of positive
o(ROPE, 2D CNN) ranging from 9.8 to 56.2 and positive o(ROPE,Benchmark)
ranging from 1.83 to 21.5.

Figure 6 shows the results for 2D CNN with Tabular Image compared with each
of the benchmark models for the HC dataset. From the graph, we can see that 2D
CNN with Tabular Image significantly performed better than SVM, DT, and MLP
in terms of AUC and H-measure in support of 2D CNN ranging from 95.99% to
100% and from 98.33% to 100%, respectively. In addition, posterior probabilities also
support that 2D CNN with Tabular Image performed better than Logistic regression,
1D CNN and an ensemble model, random forest, in terms of AUC (81.53%−92.77%),
H-measure (85.79%−93.56%), and KS (80.14%−93.9%). It is apparent from this graph
that our method positively outperformed all the ensemble boosting models considered,
including the state-of-the-art XGBoost, with posterior odds between 3.3 and 12.1 for
all three metrics.

Figure 7 shows the results for 2D CNN with Tabular Image compared with each of
the benchmark models for the FM dataset. From the graph, we can see that 2D CNN
with Tabular Image significantly performs better than all individual models with a
probability between 99.88% and 100%. Regarding the ensemble models, random for-
est and AdaBoost performed significantly worse than 2D CNN with Tabular Image in
support of a probability between 95.37% and 97.21%. In addition, 2D CNN with Tab-
ular Image, again, positively outperformed the state-of-the-art GBDT and XGBoost,
with posterior odds between 2.3 and 4.3 for all three metrics.

Fig. 5 Bayesian correlated t-tests for the difference between the 2D CNN with Tabular Image and
each classifier considered in this study for each performance metric for the TC dataset. It shows a 3× 3
matrix of bar plots. Each bar plot has three types of bars:P (2D CNN) is the posterior probability that
2D CNN with Tabular Image performs practically better than the classifier mentioned in the title of
each bar plot; P (ROPE) is the posterior probability of the two classifiers being practically equivalent;
and P (Benchmark) is the posterior probability that the classifier mentioned in the title of each bar plot
performs practically better than the 2D CNN with Tabular Image. The number on each bar represents
the posterior probability of the Bayesian correlated t-test for each metric.
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Fig. 6 Bayesian correlated t-tests for the difference between the 2D CNN with Tabular Image and
each classifier considered in this study for each performance metric for the HC dataset. It shows a 3× 3
matrix of bar plots. Each bar plot has three types of bars:P (2D CNN) is the posterior probability that
2D CNN with Tabular Image performs practically better than the classifier mentioned in the title of
each bar plot; P (ROPE) is the posterior probability of the two classifiers being practically equivalent;
and P (Benchmark) is the posterior probability that the classifier mentioned in the title of each bar plot
performs practically better than the 2D CNN with Tabular Image. The number on each bar represents
the posterior probability of the Bayesian correlated t-test for each metric.

5.3 Comparison of different tabular data-image
transformation methods

We compared our Tabular Image with other popular tabular data-image transfor-
mation methods: One-hot (Dastile and Celik, 2021), and DeepInsight (Sharma et al,
2019). Table 7 shows the average test set AUC, H-measure, KS, and their corre-
sponding standard deviation of five-fold cross-validation for each tabular data-image
transformation method with the ConvNeXt on each dataset.

Overall, our Tabular Images tend to perform better than DeepInsight and One-hot
transformation for all evaluation metrics considered in both datasets. Our method out-
performed DeepInsight with an improvement in AUC ranging from 11.33% to 25.24%
while identifying an increment ranging from 0.89% to 41.75% in AUC compared to the
One-hot transformation. Compared to One-hot and DeepInsight, our proposed Tab-
ular Image can better preserve information than data transformation methods like
DeepInsight and One-hot, which apply dimension reduction techniques or use a sparse
matrix with value 0 and 1 to obtain a 2D image. The use of dimension reduction or
a sparse matrix may result in information loss and thus hinder performance. Interest-
ingly, we can see that the AUC of DeepInsight in TC and HC and the AUC of One-hot
in the FM dataset are only slightly above 50%, showing limited improvement com-
pared to random guesses. These results show that the performance of One-hot and
DeepInsight is unstable across three datasets that have varying scales and complexity.
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Fig. 7 Bayesian correlated t-tests for the difference between the 2D CNN with Tabular Image and
each classifier considered in this study for each performance metric for the FM dataset. It shows a 3× 3
matrix of bar plots. Each bar plot has three types of bars:P (2D CNN) is the posterior probability that
2D CNN with Tabular Image performs practically better than the classifier mentioned in the title of
each bar plot; P (ROPE) is the posterior probability of the two classifiers being practically equivalent;
and P (Benchmark) is the posterior probability that the classifier mentioned in the title of each bar plot
performs practically better than the 2D CNN with Tabular Image. The number on each bar represents
the posterior probability of the Bayesian correlated t-test for each metric.

In contrast, Tabular Image offers a more informative and stable approach that yields
state-of-the-art performances across datasets of varying scales and complexity.

Table 7 The average (standard deviation) test set AUC and KS of five-fold cross-validation for
different image transformation methods on each dataset.

Dataset Data transformation method AUC H measure KS
TC DeepInsight 52.74% ± (12.32%) 5.61% ± (4.61%) 0.2225 ± (0.0869)

OneHot 77.09% ± (0.90%) 28.32% ± (2.09%) 0.4236 ± (0.0238)
Tabular Image 77.98% ± (1.03%) 28.88% ± (2.08%) 0.4281 ± (0.0236)

HC DeepInsight 53.84% ± (6.31%) 1.41% ± (1.53%) 0.0951 ± (0.0346)
OneHot 72.43% ± (0.41%) 15.72% ± (0.70%) 0.3348 ± (0.0073)
Tabular Image 75.06% ± (0.36%) 19.70% ± (0.72%) 0.3729 ± (0.0093)

FM DeepInsight 80.42% ± (6.35%) 29.72% ± (10.07%) 0.4941 ± (0.1031)
OneHot 50.00% ± (0.00%) 0.00% ± (0.00%) 0.0000 ± (0.0000)
Tabular Image 91.75% ± (1.15%) 55.05% ± (3.21%) 0.6827 ± (0.0355)

5.4 Robustness across different image sizes on Tabular Image
To test whether our proposed method is robust to the image size, we ran Tabular
Image with different image size parameters on the TC, HC, and FM datasets. We ran
the Tabular Image with three image sizes, small, regular, and large: 16× 16, 32× 32,
and 96 × 96 pixels, respectively. After data transformation, images of each size were
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fed into a ConvNeXt model. The optimiser and other hyper-parameters used in the
robustness check are consistent with those we used in the section 4.2. We evaluated
the overall discriminative performance by using AUC. Figure 8 shows the average of
AUC in five-fold cross-validation across three image sizes. As can be seen, image sizes
of 32 × 32 and 96 × 96 result in stable and similar AUC. However, a slight drop of
about 0.2% in AUC can be seen in the TC and HC datasets, and a drop of about
0.5% in AUC can be seen in the FM dataset when the image size shrinks to 16× 16.
A possible explanation for this might be that the model architecture we used in this
study is tailored for images greater than or equal to 32×32. Therefore, using an image
size of 16 × 16 requires resizing the images to at least 32 × 32 using interpolation
techniques. The drop in AUC indicates that interpolation techniques may hamper the
information in tabular images, making extracting useful information in input images
difficult. As a result, we suggest that when scaling tabular images, one should try to
adjust the image size to the suggested image size of the selected 2D CNN when using
Tabular Image. As a resilient method, Tabular Image can adjust the size of images
without losing any information. This means that as long as the image size is sufficient
for the input features one plans to use, it can be shrunk or enlarged to match the 2D
CNN requirements, making it easier to use advanced 2D CNNs with different input
size requirements with minimal variance of performance.

Fig. 8 The average AUC across three different image sizes in the five-fold cross-validation.

5.5 Robustness across different feature arrangement methods
on Tabular Image

We also ran the Tabular Image with three different feature arrangement methods,
namely correlation method, descending pattern method, and random ordering, on the
TC, HC and FM datasets to test the robustness of our proposed method to feature
arrangement methods. Figure 9 shows the visualisation of a sample’s three different
feature arrangement methods in the TC dataset. We first generated tabular images
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using the correlation method, as described in section 3.3. The descending pattern
method is similar to the correlation method, except that the order of the feature
arrangement matrix is decided by the descending order of the IV of the corresponding
feature rather than a correlation coefficient matrix. In other words, values of the same
feature are adjacent to each other, which minimises the interaction among features.
Finally, we also generated tabular images using a random method by randomly shuf-
fling the pixel locations for each image. In contrast to the aforementioned two methods
that follow specific patterns, the pixel locations of every image in the random method
do not follow the same pattern. In other words, each image follows a different feature
arrangement pattern in the random method. The image size of three different feature
arrangement methods was fixed to 32×32 pixels for a fair comparison. Next, each type
of image was used as input in a ConvNeXt model, and the prediction performance was
evaluated using AUC in five-fold cross-validation. Figure 10 shows the average AUC
in five-fold cross-validation across different feature arrangement methods. The AUC
of the correlation method outperformed the descending pattern method, highlighting
that correlation among features should be considered and can improve model perfor-
mance when applying 2D CNN. In addition, we explored the relationship between
the average Spearman correlation of features and the difference in AUC between cor-
relation and descending Methods for TC, HC, and FM. From Figure 11, it can be
seen that as the average Spearman correlation of features becomes stronger, the AUC
between correlation and descending Methods increases, indicating Tabular Image can
effectively extract information from Spearman correlation and improve the predictive
performance. Furthermore, it is worth noting that the AUC of the random method
significantly dropped from 5.23% to 17.79% compared to the correlation method,
demonstrating that all images should follow the same pattern other than randomly
arranging each image; otherwise, it is difficult for 2D CNNs to extract relationships
between input features and default risk.

Fig. 9 Example images of three types of feature arrangement methods of a sample in the TC dataset.
These three images were generated following the correlation method, descending pattern method, and
random method, respectively.
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Fig. 10 The average AUC of feature arrangement methods in the five-fold cross-validation in the TC
dataset.

5.6 Robustness of random oversampling on Tabular Image
Class imbalance is a significant challenge in credit scoring applications, impacting the
IV and its ability to evaluate the importance of features. As we use random oversam-
pling as a rebalancing technique to mitigate the class imbalance problem, experiments
are conducted to assess whether the ranks of IVs of features changed before and
after applying random oversampling across the three datasets used in this study. The
changes are calculated by subtracting the rank of IV before applying random over-
sampling from the rank of IV after applying random oversampling. Figure 12 shows
the histograms to illustrate the distribution of IV ranking differences, where most
differences cluster around zero, indicating the minimal impact of class balancing on
the ranks of IVs. The p-values, derived from the Wilcoxon signed-rank test, with the
Taiwan Credit (p = 1.000), Home Credit (p = 0.683), and Fannie Mae (p = 0.867)
showing no significant difference between the ranks of IVs of features before and after
applying random oversampling. This suggests that our method is stable when using
random oversampling, as random oversampling does not significantly alter the ranks
of features as measured by IV.

6 Summary and Discussion
We set out to take advantage of 2D CNNs in credit scoring tasks and mitigate the
challenges neural networks encountered when applied to tabular data. The present
research developed the Tabular Image, a novel data transformation method to convert
tabular data into images for 2D CNNs and mitigates the mixed feature type problem
and the data sparsity problem for credit scoring tasks. To investigate its effectiveness,
we applied the Tabular Image to three credit datasets: TC, HC and FM. We trained a
2D CNN with tabular images to predict the probability of default on credit applicants.
To better evaluate the proposed Tabular Image, the prediction performances were
compared with nine benchmark machine learning methods and two tabular data-image
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Fig. 11 Relationship between Average Spearman Correlation of Features and the Difference in AUC
Between Correlation and Descending Methods for TC, HC, and FM

transformation methods. We also evaluated the robustness of the proposed Tabular
Image.

The comparison with machine learning methods showed that the performance of
2D CNN trained on tabular images is consistently good, and its prediction advantage
is more evident in the more complicated dataset, confirmed by Bayesian correlated t-
tests. Particularly, our proposed method with a deep 2D CNN constantly outperformed
its shallower counterpart, 1D CNN. These results indicate that it is possible to dig
more useful signals for default prediction utilising 2D CNNs with a proper data repre-
sentation method. This finding is especially valuable for companies which suffer from
severe information asymmetry. For instance, companies serving subprime borrowers
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Fig. 12 Distribution of the difference in Information Value (IV) ranking between balanced datasets and
original datasets across three different datasets: Taiwan, Home, and Fannie Mae. The p-values, derived
from the Wilcoxon signed-rank test, indicate the significance level of the differences observed.

with little or no credit history usually face a high delinquency rate as borrowers tend
to have higher credit risk. Meanwhile, the lack of credit data prevents these financial
institutions from building better credit scoring models from existing data. Therefore,
even a small fraction of improvement using existing data can be considered significant,
saving a huge amount of loan loss. The results also show that the performance of 2D
CNN with tabular images continues to increase as the sample size increases, which is
consistent with the results of Doumpos et al (2023); Grinsztajn et al (2022), indicating
a promising future of applying Tabular Image to big data in credit scoring tasks.

The comparison with two tabular data-image transformation methods showed that
Tabular Image provides the best prediction performance among the data transfor-
mations used in this study. Besides prediction performance, Tabular Image shows
advantages compared to existing tabular data-image transformation methods. First,
Tabular Image creates compact images while the DeepInsight and One-hot transfor-
mation method creates images where a large proportion of the matrices are blank (i.e.
0). Moreover, for the One-hot transformation method, the number of blank parts will
increase if there are more bins in a discretised feature or if a categorical feature has
many unique values. Second, Tabular Image can mitigate information loss by directly
using feature values as pixels compared to DeepInsight, which needs to perform a
dimension reduction technique before transforming tabular data to images. Third, our
proposed method can create adaptive image width and height to suit the different
input requirements of 2D CNNs. In contrast, the image size of the One-hot transforma-
tion method is highly related to the number of features and WOE bins. For instance,
if one needs to apply deep 2D CNNs that require 224× 224 image, the dataset should
have 224 features with a maximum bin of 224, which is usually difficult to achieve.

The robustness check on different image sizes for Tabular Image suggests that the
input image size should match the requirement of the 2D CNN planned to use to gain
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the maximum performance. When using the proposed Tabular Image method, chang-
ing the image size will not affect the pixel values or the proportion of features in the
image. Therefore, as long as the pixel values and number of features remain consis-
tent and the image size is large enough to include all planned features, it should be
possible to adjust the image size to meet the input requirements of different 2D CNN
architectures without losing any information. This observation may be crucial to tabu-
lar data-image transformation methods applied to credit data because the traditional
interpolation techniques for images may introduce unexpected noise when scaling an
image, turning minority samples into majority samples and vice versa, damaging the
dataset and misleading the model training process. In addition, this study investi-
gated the performance of different feature arrangement methods applied to Tabular
Image. We demonstrated that spatial relationships should be considered while form-
ing images. This study used the Spearman correlation coefficient matrix to evaluate
spatial relationships between features and yield better results than DeepInsight and
the One-hot transformation method. We also showed that during transformation, all
images need to follow the same feature arrangement method; otherwise, it is difficult
for a 2D CNN to extract relationships within a dataset.

The effectiveness of deep learning methods in credit scoring remains a topic of
active debate, particularly when compared to the state-of-the-art XGBoost. Our latest
model outperformed the XGBoost and other state-of-the-art models in large and chal-
lenging datasets. Moreover, we see it as a complementary approach that can enhance
predictive performance on large datasets and offer additional benefits. XGBoost per-
forms well on small datasets, but its performance on large datasets is less explored
(Gunnarsson et al, 2021; Lessmann et al, 2015). On the two larger datasets in our
experiments, our method outperformed XGBoost in terms of AUC, H-measure, and
KS, with positive results for all three metrics confirmed by Bayesian correlated t-tests.
The consistent improvement across multiple large datasets demonstrates the robust-
ness of our approach, showing the potential of applying 2D CNN on large datasets,
which aligns with Borisov et al (2022). We further demonstrated, using the HC and FM
datasets, that our method outperformed all benchmark models in predicting unbanked
borrowers who have limited credit history and subprime borrowers who have lower
credit scores. By applying 2D CNNs with the Tabular Image, lenders can more accu-
rately assess the risk of unbanked and subprime borrowers, potentially expanding
their customer base and increasing profitability. For unbanked and subprime borrow-
ers who usually suffer from high interest rates due to the increased risk, our method
can improve access to loans with fair interest rates by correctly estimating the risk,
making loans less expensive, and thereby promoting greater financial inclusion.

Besides findings demonstrated by our experiments, our method introduces sev-
eral additional unique contributions. First, Tabular Image introduces a novel way of
converting tabular data into images by embedding the WOE and IV. This transforma-
tion allows us to leverage two-dimensional convolutional neural networks (2D CNNs),
which are traditionally used for image data, thereby opening new avenues for applying
powerful 2D CNNs to tabular data. Second, while XGBoost captures interactions and
non-linear relationships through feature splitting, 2D CNNs are capable of extracting
new and high-level features by leveraging spatial patterns and relationships between
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features within images. With the ability of feature extraction, 2D CNN with Tabu-
lar Image is able to explore and discover useful new features, thus enhancing feature
engineering, one of the most important steps in developing a credit scoring model.
Furthermore, new features can be used as input for XGBoost to create ensemble frame-
works to further improve the performance (Khan et al, 2022; Thongsuwan et al, 2021).
Third, 2D CNNs can take advantage of the latest developments in both hardware
and software, such as advanced GPUs and their corresponding software that allow for
faster training processes and efficient training on extensive data, which is beneficial in
the real-world lending business as the amount of loan has increased exponentially in
the recent decade11.

The proposed method also contributes to the improvement of explainability, which
is a critical requirement in credit scoring, emphasised by regulators across many
countries (Bücker et al, 2022). To address this requirement, regulators such as the
European Banking Authority and the French Prudential Supervision and Resolution
Authority recommend using model-agnostic interpretation approaches to achieve inter-
pretability (Chen et al, 2024). The proposed Tabular Image performs a lossless data
transformation, preserving original feature information and ensuring compatibility
with model-agnostic explainability methods, such as SHapley Additive exPlanations
(SHAP)(Lundberg and Lee, 2017), which have been frequently used to address the
explainability problem in credit scoring (Chen et al, 2024; Korangi et al, 2023; Talaat
et al, 2024; Zandi et al, 2024). Because each pixel in the tabular image directly
corresponds to a specific feature in the original tabular data, standard explainabil-
ity techniques that generate pixel-level importance, including SHAP, can be easily
and directly applied to explain the predictions made by the downstream 2D CNN
models. Such seamless compatibility with established interpretation methods ensures
explainable model predictions, aligning closely with regulatory expectations without
introducing additional complexity.

Another significant aspect of 2D CNN with Tabular Image is its future poten-
tial for practical applications. Our method enables transfer learning (Alzubaidi et al,
2021), which XGBoost does not naturally support. 2D CNN models can be pre-trained
on large Tabular Image datasets and fine-tuned on a small one. By leveraging exist-
ing large datasets, transfer learning provides the potential to mitigate the cold-start
problem, especially in scenarios when labelled data in the target domain is limited,
such as launching a new business or expanding into a new market. In addition, our
Tabular Image method could potentially enhance traditional visualisation techniques,
facilitating a clearer understanding and the identification of unusual patterns within
the data. For example, Tabular Image can be embedded into the loan approval process
to provide intuitive images for loan officers. This makes it more efficient to initially
identify the risk of a potential borrower based on the brightness and pattern of the
tabular image before checking various criteria in a tabular format that is not user-
friendly. Besides optimising the decision process of loan officers, converting credit data
into image format allows for the application of advanced image processing tools and
techniques (e.g. pattern recognition algorithms) (Paolanti and Frontoni, 2020; Schmid-
huber, 2015), further aiding in the detection of subtle patterns and correlations that

11see:https://data.worldbank.org/indicator/FS.AST.PRVT.GD.ZS
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might be missed in tabular formats. Additionally, this image-based approach aligns
with the trend towards more interactive and user-friendly data analytics tools (Keim
and Kriegel, 1996; Leite et al, 2018; Perrot et al, 2015), which are generally more
engaging and easier to interpret.

From a managerial perspective, the findings of this research provide insights into
the potential of applying 2D CNNs to large credit datasets in real-world applications.
On the one hand, because of the large number of total loans today, even a small frag-
ment of performance improvement by applying 2D CNNs with our proposed method
can translate into a huge amount of loan loss savings. For instance, according to the
2019 financial report12 of Home Credit Group B.V., the provision for Expected Credit
Losses on loans to customers was EUR 1.6 billion as of 31 December 2019, which indi-
cate that even a 0.1% improvement may result in a loan saving of EUR 1.6 million. On
the other hand, with more accurate credit scoring models, the possibility of the sub-
prime and unbanked population accessing loans with fair interest rates may increase,
thus increasing financial inclusion.

Besides promising results in credit scoring tasks, Tabular Image offers an adaptable
framework that can be expanded to accommodate various datasets in other domains
quickly. First, a binning algorithm can be designed and used to select discretisa-
tion cut points for numerical features to accommodate the aim of the research. For
instance, Chi-squared, tree-based, or entropy-based binning can also be applied to find
appropriate cut points. Second, different measures can be implemented to numerically
represent the strength of a bin, as long as the measure represents the importance of
a feature in the research domain. For instance, entropy can be used to measure the
impurity of a bin and information gain can be used to evaluate the importance of a fea-
ture. Lastly, the technique to evaluate correlation or distance between features, such
as Kendall rank or Euclidean distance, can be changed to the one that better repre-
sents the relationship between two features in a specific field. This flexible framework
leads to the potential of adjusting Tabular Image to suit various tabular datasets and
requirements in other domains. For example, the field of credit card fraud detection
usually contains features mixed with numerical and categorical features such as trans-
action amounts, types of cards, merchant information, and digital footprints generated
by users, all in a tabular format. Transforming this data into images allows CNNs
to capture correlations and subtle anomalies that might be overlooked by traditional
methods, enhancing the detection of fraudulent activities and helping both normal
users and companies to reduce potential loss. Another example of a potential field of
application may be energy consumption forecasting. Energy providers usually collect
features such as consumption patterns, weather conditions, and user demographics.
These features are usually present in a tabular format and might exhibit high corre-
lations. By classifying energy consumption patterns (e.g., high energy consumption,
moderate, or low), energy providers can manage energy more efficiently, increasing
environmental sustainability. Tabular data is one of the most common data types
in real-world applications and is widely used in applications that are based on rela-
tional databases. Our proposed method, therefore, provides the potential to help other

12https://www.homecredit.net/financial-disclosures/
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domains take advantage of advanced 2D CNNs to improve the model performance in
these domains further.

7 Conclusion and future work
This study has shown that with Tabular Image, 2D CNNs can yield good predictive
performance in credit scoring. We further extend the work of Gunnarsson et al (2021)
by exploring the possibility of 2D CNNs and testing models on large datasets in the
credit scoring field. By proposing Tabular Image, this study provides a novel way to
convert tabular data into compact images to take advantage of a 2D CNN by embed-
ding two classical pieces of information used in credit scoring tasks, namely WOE and
IV, in the image. Through rigorous testing of various models, we demonstrate that
the proposed method with a deep 2D CNN exhibits state-of-the-art predictive perfor-
mance, especially in handling large and complicated datasets while better preserving
information in tabular data compared to other tabular data-image transformation
methods. This opens a gateway for applying powerful deep 2D CNNs and their corre-
sponding modules, which have already demonstrated impressive performance in other
domains and are supported by advanced hardware and software techniques in the credit
scoring field. Furthermore, with the flexible framework provided by Tabular Image,
this advancement can be further extended to various other fields as tabular data is
one of the most common data types in real-world applications and is widely used in
medicine, finance, manufacturing, fraud detection, and many other applications that
are based on relational databases.

Future research could explore more existing modules like advanced optimisers or
regulation techniques like label smoothing (Müller et al, 2019) to further improve the
performance of 2D CNNs. Researchers may also try to explore more advanced setups
for 2D CNNs, like masked image modelling (Han et al, 2023), or develop specially
designed 2D CNNs for tabular image tasks. Future work could also usefully explore
how data augmentation techniques (Xu et al, 2023) in the image recognition domain
can mitigate the long-lasting data imbalance problem in credit scoring. In addition,
further research should be undertaken to explore how to improve the explainability
of images to facilitate the analysis of a single observation to enhance instance-level
model explanations. Visual explanation techniques like Grad-CAM (Selvaraju et al,
2017) and Saliency Maps (Simonyan et al, 2014) could also be investigated to enhance
the explainability of 2D CNNs.
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