
Combining Gait and Face for Tackling the Elapsed Time Challenges

Yu Guan, Xingjie Wei, Chang-Tsun Li
Department of Computer Science,

University of Warwick, Coventry, CV4 7AL, UK
g.yu,x.wei,c-t.li@warwick.ac.uk

Gian Luca Marcialis, Fabio Roli
Department of Electrical and Electronic Engineering,

University of Cagliari, 09123, Cagliari, Italy
marcialis, roli@diee.unica.it

Massimo Tistarelli
Department of Sciences and Information Technology,

Univeristy of Sassari, 07100, Sassari, Italy
tista@uniss.it

Abstract

Random Subspace Method (RSM) has been demonstrat-
ed as an effective framework for gait recognition. Through
combining a large number of weak classifiers, the gener-
alization errors can be greatly reduced. Although RSM-
based gait recognition system is robust to a large number
of covariate factors, it is, in essence an unimodal biometric
system and has the limitations when facing extremely large
intra-class variations. One of the major challenges is the
elapsed time covariate, which may affect the human walk-
ing style in an unpredictable manner. To tackle this chal-
lenge, in this paper we propose a multimodal-RSM frame-
work, and side face is used to strengthen the weak classi-
fiers without compromising the generalization power of the
whole system. We evaluate our method on the TUM-GAID
dataset, and it significantly outperforms other multimodal
methods. Specifically, our method achieves very competi-
tive results for tackling the most challenging elapsed time
covariate, which potentially also includes the changes in
shoe, carrying status, clothing, lighting condition,etc.

1. Introduction
Compared with other biometric traits like fingerprint or

iris, gait recognition can be applied at a distance with-
out requiring the cooperations from subjects, and it has
gained considerable attentions in the past decade. How-
ever, for automatic gait recognition systems, covariate fac-

tors (e.g., camera viewpoint, carrying condition, cloth-
ing, shoe, speed, video frame-rate, etc.) may affect the
performance. These factors have been extensively stud-
ied in the literatures [3–7, 9, 10, 14, 16–21, 23, 24], and
great performance improvements are made. Existing gait
recognition methods can be roughly divided into two cat-
egories: model-based and appearance-based approaches.
Model-based methods (e.g., [1] ) aim to model the human
body structure for recognition, while appearance-based ap-
proaches (e.g., [3–7,9,10,14,16–21,23,24]) are more gener-
al and they can perform classification regardless of the un-
derlying body structure. Compared with model-based meth-
ods, appearance-based approaches can also work well in the
low resolution environments, when body structure is diffi-
cult to construct.

Gait Energy Image (GEI) [7] is a popular feature tem-
plate and it is widely used in recent appearance-based al-
gorithms due to its simplicity and effectiveness [3, 5–7, 9,
10, 14, 16, 18, 20, 21, 23, 24]. GEI is the average silhouette
over one gait cycle, which encodes a number of binarized
silhouettes into a grayscale image [7, 16]. The averaging
operation can, not only smooth the segmentation errors but
also significantly reduce the computational cost [7]. Sever-
al GEI samples from the newly released TUM Gait from
Audio, Image and Depth (TUM-GAID) database [9] are
illustrated in Fig. 1. However, when the walking condi-
tion of the query gait is different from the gallery, direc-
t GEI matching makes the classification process prone to
errors [16]. To reduce such effect, various feature extrac-
tion algorithms have been proposed in the previous work-



s (e.g., [5, 7, 20, 21]). Among these algorithms, Random
Subspace Method (RSM) [5] is the most effective one. To
overcome the problem caused by overfitting the less rep-
resentative training data (i.e., gallery), a large number of
weak classifiers are combined. The RSM framework is ro-
bust to a large number of covariate factors such as shoe, (s-
mall changes in) view, carrying condition [5], clothing [6],
speed [3], frame-rate [4], etc. However, the effectiveness of
RSM has not been fully validated against the most challeng-
ing elapsed time covariate, which potentially also includes
the changes of clothing, carrying condition, weight, fatigue,
etc. Elapsed time may have an unpredictable effect on gait,
making the gait recognition system less reliable.

It is an open question to handle extremely large intra-
class variations (e.g., elapsed time) for unimodal biomet-
ric systems, and in this case building multimodal system
could be an effective way to enhance the performance [13].
In the context of gait recognition, it is natural to fuse face
[10,17,23,24]. In [17], improved performance was achieved
when fusing lateral gait and frontal face. It is more practical
to fuse lateral gait and side face (referred to as gait and face
in this paper), since both modalities can be acquired using
the same camera. In [23], Zhou and Bhanu performed a
score-level fusion of gait and the Enhanced Side Face Im-
age(ESFI), they found that improving face image quality
can further enhance the fusion performance. They also used
a feature-level fusion strategy by concatenating the ESFI
and gait into a new feature template for classification [24].
Alpha matte was used by Hofmann et al. to segment gait
and face images with better qualities, before a score-level
fusion. Gait can also be combined with gait from different
feature spaces [7] or cameras/sources [9, 18]. In [7], GEI
and synthetic GEI templates were generated from the same
silhouettes to different feature spaces, and they were fused
in the score level. In [9], GEI, depth, and audio informa-
tion were fused to tackle the elapsed time challenges and
encouraging performance was achieved. In [18], by con-
catenating gait information from 3 cameras from different
views into a new template, promising results were achieved
on a small temporal dataset.

Performance can be improved when fusing gait and
other modalities. However, the role of feature extrac-
tion is largely neglected by the afore-mentioned method-
s [7, 9, 10, 18, 23, 24]. In this work, we aim to extend
the state-of-the-art RSM to a multimodal-RSM framework.
Multi-class Kernel Fisher Analysis (KFA) [15] is used for
face feature extraction. Then we use the corresponding face
score to strengthen the gait-based weak classifiers, before
the majority vote. By assigning lower weight to the face s-
core, the diversity of the weak classifiers is preserved. The
experimental results suggest that although face recognition
at a distance is less reliable, it can effectively assist gait
recognition. By fusing gait and face under the proposed
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Figure 1. Gait images from the TUM-GAID dataset for a subject
in 6 different conditions. (a): normal; (b): backpack; (c): coating
shoes; (d): elapsed time + normal; (e): elapsed time + backpack;
(f): elapsed time + coating shoes. Top row includes the gait RGB
images while the bottom row includes the corresponding GEIs.

multimodal-RSM framework, the performance is dramati-
cally improved for tackling the hard problems such as e-
lapsed time.

2. Motivation
Compared with other covariate factors, only a few work-

s systematically study the effect of elapsed time. In [18],
Matovski et al. investigated the effect of elapsed time (up
to 9 months) based on 25 subjects by fusing the gait infor-
mation from 3 cameras in different views, and their results
suggest that: 1) irrespective of other covariates, short term
elapsed time does not affect the recognition significantly;
2) the accuracies may drop rapidly when the potential co-
variates (e.g., clothing) are included. Since in real-world
scenarios it is unrealistic to have other covariates perfectly
controlled, our objective in this work is to tackle the elapsed
time challenge in a less constrained environment. Besides,
different from the work in [18] by using 3 different cam-
eras, the modalities we are fusing (i.e., gait and face) can be
acquired using a single camera.

In RSM systems, weak classifiers with lower dimension-
ality tend to have better generalization power [8]. However,
they may face an underfitting problem if the dimensionality
is too low. It is desirable to use an independent source to
strengthen the weak classifiers. Although face at a distance
may be less reliable, it may provide some complementary
information for gait. In [11], Jain et al. demonstrated that
the error rate of fingerprint system can be further reduced
by integrating soft biometric information. Similarly, in this
work we treat the less reliable face as a soft biometric trait
by assigning lower weight to its score. After summing up
the weighted face score and each gait score (corresponding
to each weak classifier), the final result is achieved by ma-
jority vote among the updated classifiers. It is also worth
mentioning that by assigning lower weight to face score,
the face information is less likely to smooth the diversity
(among the updated weak classifiers), which is crucial for
multiple classifier systems [2].



Figure 2. The process of generating the 3 feature templates, i.e., T-Gait, Gait, Face

3. Gait Recognition
3.1. Gait Feature Templates

Gabor-filtered GEI (referred to as Gait) has been demon-
strated to be an effective feature template for gait recogni-
tion [3, 20, 21]. Given a GEI sample, Gabor functions from
5 scales and 8 orientations are employed to generate the
Gait template (see Fig. 2). Another gait feature template
derived from the same silhouettes is also employed in this
work. After transposing the optimized-GEI defined in [14],
we use the corresponding Gabor-filtered features (referred
to as T-Gait) as the second gait template (see Fig. 2). For
a gait sequence, by using Gait (resp. T-Gait), RSM [5] can
extract the random features in the column direction (resp.
row direction) in the first place. For computational efficien-
cy, similar to [21], we use the subsampled version of both
templates.

3.2. RSM for Gait Recognition

In this section, we introduce the feature extraction pro-
cess using the RSM framework [5]. First 2DPCA [22] is
used to decorrelate the feature space (in column direction).
Given n Gait/T-Gait samples Ii(i = 1, 2, . . . , n) in the
gallery, the scatter matrix S can be estimated using:

S =
1

n

n∑
i=1

(Ii − µ)T (Ii − µ) (1)

where µ = 1
n

∑n
i=1 Ii. The eigenvectors (of S) associat-

ed with zero eigenvalues are removed, while the rest are

preserved as candidates for the random subspace construc-
tion. L random spaces are generated, with the projection
matrices R1, R2, ..., RL formed by randomly selecting N
eigenvectors from non-zero candidates. Each sample can
be projected into L subspaces, and we use the correspond-
ing coefficients as the new feature descriptors for a certain
subspace.

Given the lth subspace, to achieve the optimal class sep-
arability, 2DLDA is further employed (in row direction) to
project the coefficients corresponding to the gallery samples
into the canonical space. There is a projection matrix W l

maximizing the ratio of the between-class scatter matrix Sl
b

to the within-class scatter matrix Sl
w, i.e.,

argmax
W l

trace(((W l)TSl
wW

l)−1((W l)TSl
bW

l)) (2)

For the lth subspace, let W l(resp. Rl) be the canonical s-
pace (resp. eigenspace) projection matrix, then the feature
extraction can be performed. Given a gait sequence with np
Gait/T-Gait samples It(t = 1, 2, . . . , np), the correspond-
ing extracted feature templates Ql

t are:

Ql
t =W l(ItR

l) (t = 1, 2, . . . , np) (3)

After feature extraction for the the lth subspace using (3),
Nearest Mean (NM) classifier can be used to get the gait
score for the lth subspace. For RSM-based gait recognition
system [5], among the L base classifiers, a decision-level
fusion (e.g., majority vote) is normally used for the final
classification decision.



4. Face Recognition
4.1. Face Cropping

The process of face cropping is demonstrated in Fig. 2:
first we use the binarized depth mask on the correspond-
ing grayscale image to get the whole human body from the
background. Then, a line-by-line scanning is performed to
locate two landmarks (i.e., the top-most pixel and the right-
most pixel of the upper body area). A pre-defined face area
is then cropped based on the two landmarks. Finally the
cropped faces are aligned by the landmarks and normalized
to a size of 18× 18 pixels, and they are referred to as Face
templates in this work.

4.2. KFA for Face Recognition

In this work, multi-class KFA [15] is used for face fea-
ture extraction. KFA first performs nonlinear mapping from
the input space to a high dimensional feature space by us-
ing the kernel trick. Then LDA can be employed in the new
feature space.

Let X = [x1, x2, ..., xn] ∈ Rm×n be the data matrix of
n training samples (i.e., gallery) in the input space, and xi
denotes the concatenated vector from the ith Face template.
Assume there are c classes and n1, n2, ..., nc are the number
of training samples for each class where

∑c
i=1 ni = n. Let

f : Rm → F be a nonlinear mapping from the input space
to the feature space. Then the data matrix in the feature
space can be represented as: Y = [f(x1), f(x2), ..., f(xn)].
Generally, we expect different classes to be well separated
while samples within the same class to be tightly related.
Similar to (2), this leads to optimizing J1 = trace(S−1

m Sb)
where Sb is the between-class scatter matrix while Sm is the
mixture scatter matrix in the feature space.

However, it is difficult to evaluate Sm and Sb in the high
dimensional feature space. In KFA, a kernel matrix K is
defined as: K = Y TY where Kij = (f(xi) · f(xj)), i, j =
1, 2, ..., n. So optimizing J1 leads to solving the following
eigenvalue problem by replacing Sm and Sb with the kernel
matrix K:

KZKα = λKKα, (4)

where α (resp. λ) denotes the eigenvector (resp. eigen-
value). Here Z ∈ Rn×n is a block diagonal matrix:
Z = diag{Z1, Z2, ..., Zc} where Zj is a nj × nj ma-
trix with elements all equal to 1

nj
, j = 1, 2, ..., c. Let

A = [α1, α2, ..., αr] ∈ Rn×r be the eigenvectors corre-
sponding to the r(r 6 c − 1) largest eigenvalues, and for a
face vector x, the KFA features can be extracted by using:

F = ATB (5)

where B = [f(x1) · f(x) f(x2) · f(x) ... f(xn) · f(x)]T .
Actually, the kernel matrix K can be computed by a kernel
function instead of explicitly performing the nonlinear map-

ping. Here we use the fractional power polynomial kernel
function [15] as:

k(a, b) = (f(a) · f(b)) = sign(a · b)(abs(a · b))d (6)

where sign(·) is the sign function and abs(·) is the absolute
value operator. We empirically set d = 0.8. By using KFA,
the linear model is able to capture the nonlinear patterns in
the original data. After feature extraction, we can get the
face score by a NM classifier.

5. Fusion Strategy
In the context of the RSM framework, we update the vot-

ers/base classifiers by fusing face score and each gait score
out of the L subspaces, before the majority vote. For the
lth subspace, we first use the min-max normalization [12]
on the face score and the lth gait score, respectively. Then
the voters are updated using weighted sum rule. Specifi-
cally, for the lth subspace, given the normalized gait score
Sl
gait and the normalized face score Sface, the updated s-

core Sl
face+gait corresponding to the lth classifier is defined

as:
Sl
face+gait = ωSface + Sl

gait. (7)

Due to the fact that the same face score Sface is used to up-
date a total number ofL gait-based classifiers, the face score
weight ω is negatively correlated with the diversity of this
multiple classifier system. For RSM-based multiple classifi-
er systems, previous studies [5,8] empirically demonstrated
that the performance does not decrease with the increasing
number of classifiers (i.e., non-decreasing diversity). From
the perspective of diversity, intuitively it is preferable to as-
sign ω a small value.

In [11], when the less reliable soft biometric traits (gen-
der, ethnicity, and height) with low weights assigned were
fused in the fingerprint system, significant performance gain
was achieved. In the context of human identification at a
distance, although face is less reliable due to low resolution
or the presence of other covariates, it may provide some
complementary information for gait when using it as the
ancillary information with low weight assigned.

Due to the afore-mentioned issues, we use face as a soft
biometric trait with its score low weight assigned, and the
corresponding evaluations are provided in Section 6.2. Af-
ter the score is updated for each voter, majority vote is ap-
plied for the final classification decision. We also fuse t-
wo multimodal-RSM systems (i.e., based on source T-Gait
+ Face and source Gait + Face) in the decision level. In
this work, we simply combine equal number voters from
each source, before the majority vote. For example, the
decision-level fusion with 1000 voters denotes 500 voters
from source T-Gait + Face and 500 voters from source Gait
+ Face, respectively.



- Gallery Probe
Walking Condition N N B S TN TB TS

#Seq. 155× 4 155× 2 155× 2 155× 2 16× 2 16× 2 16× 2

#Gait/T-Gait per Seq. 1 1 1 1 1 1 1
#Face per Seq. 4 1 1 1 1 1 1

Table 1. Experimental settings on the TUM-GAID dataset. Abbreviation note : N - Normal, B - Backpack, S - Shoe, TN - Time+Normal,
TB - Time+Backpack, TS - Time+Shoe.

6. Experiments
We conduct experiments on the newly released TUM-

GAID dataset [9]. This dataset simultaneously contain-
s RGB video, depth and audio with 305 subjects in total.
In [9], Hofmann et al. designed an experimental protocol
(based on 155 subjects) to evaluate the robustness of al-
gorithms against covariate factors like shoe, carrying con-
dition (5kg backpack), elapsed time (January/April) which
also potentially includes changes in clothing, lighting con-
dition, etc.

In the TUM-GAID dataset, the depth images in the
tracked bounding box are provided and we can get the cor-
responding binarized silhouettes/masks by thresholding and
aligning. But note that our method can also be applied on
RGB videos, and in this case the silhouettes can be seg-
mented using some background substraction methods (e.g.,
[10, 19]). Then we can acquire the Face template using the
method introduced in Section 4.1. The process of getting
the 3 feature templates used in this paper is illustrated in
Fig. 2. There is 1 gait template (i.e.,Gait/T-Gait) corre-
sponding to a gait sequence. For face, since there are small
view changes in a sequence, in the gallery we select 4 Face
templates from each sequence to capture more intra-class
variations. For probe, only 1 Face template is selected from
each sequence. The experimental settings of the gallery and
probe sets are shown in Table 1.

There are two main parameters in the RSM framework
[5], namely, the random subspace dimension N , and classi-
fier number L. It was verified that in the RSM framework
the performance does not decrease with the increasing num-
ber of classifiers [5, 8]. In this work, following [5], we set
L = 1000. In the RSM framework when the subspace di-
mension N is too large it faces an overfitting problem [5]
and its performance converges to the one of traditional 2D-
PCA+2DLDA. Classifiers with small value of N can usual-
ly generalize well [8], but underfitting may occur when N
is too small. Our aim is to strengthen the weak classifiers
by fusing the additional face information (to avoid under-
fitting). In this case, it does not sacrifice the generalization
power of the whole system by using a small value ofN , and
we set N = 2 in this work.

To evaluate the performance of the algorithms, we use
the rank-1/rank-5 Correct Classification Rate (CCR). Rank-
1 (resp. rank-5) CCR shows the correct subject is ranked

Experiment N B S TN TB TS
#Seq. 310 310 310 32 32 32

Rank-1 CCRs
Face + KFA 89 72 71 44 38 44
Gait + RSM 100 79 97 58 38 57

T-Gait + RSM 99 62 92 61 27 57

Table 2. The rank-1 CCRs (%) by using single modality on the 6
probes from the TUM-GAID dataset.

as the top 1 candidate (resp. top 5 candidates). Due to
the random nature, the results of different runs may vary to
some extent. We repeat all the experiments 10 times and the
overall rank-1 performance statistics (mean, standard devi-
ation, maxima and minima) of the proposed multimodal-
RSM system are reported in Table 4, which indicates the
stability of our method. For the rest of the paper, we only
report the mean values.

6.1. Identification using Single Modality

Experiments based on 3 single modalities (i.e., Face on-
ly, Gait only, and T-Gait only) are conducted, respectively.
The rank-1 CCRs corresponding to the 6 probe sets are il-
lustrated in Table 2. Generally, based on a certain modality,
reasonable results can be achieved on probe sets N, B, and
S. However, when elapsed time is taken into account (i.e.,
on probe sets TN, TB, and TS), the CCRs decrease signif-
icantly. It was experimentally verified that carrying condi-
tion has little impact on RSM-based gait recognition algo-
rithms [3, 5]. However, when the object carried is heavy
(5kg backpack in TUM-GAID dataset [9]), it may change
the whole walking style to some extent and thus affects
the performance. Similarly, for the elapsed time covariate,
subjects may also change their walking styles in an unpre-
dictable manner due to potential changes in carrying status,
shoe, clothing, emotion, fatigue, etc. The coupled effect
may have significant impact on the recognition accuracies
when only gait trait is used. Although face may be affect-
ed by lighting condition and low resolution, intuitively it is
less sensitive to the heavy object carried, shoe, clothing, etc.
It may provide some additional information to enhance the
performance of the gait recognition system.
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Figure 3. Using multimodal-RSM to tackle the elapsed time challenges on probes TN, TB, and TS. Fusion denotes source T-Gait + Face
and source Gait + Face are fused in the decision level (with 500 classifiers from each source).

6.2. Tackling the Elapsed Time Covariate using
Multimodal-RSM

In this section, by using face as ancillary information,
we apply the proposed multimodal-RSM to tackle the chal-
lenging elapsed time covariate. Over probes TN, TB, and
TS, the rank-1 CCR distributions with respect to face score
weight are reported in Fig.3(a)-3(c). Fig. 3(d) summarizes
the average performance distribution of the 3 probes with
respect to face score weight. From these figures, we can
observe:

1. Higher performance can be achieved when the weight
of the face score is relatively low (e.g., 0.1 ≤ ω ≤
0.3). For example when ω = 0.3, the performance
gains over gait-based RSM (when ω = 0) are upto
15%, 25%, and 10% for probes TN, TB, and TS, re-
spectively.

2. Based on low weight of face score, T-Gait + Face
has higher performance on probe TN (Fig.3(a)), while
Gait + Face yields higher accuracies on probe TS (Fig.
3(c)). When fusing these two sources (i.e., Gait + Face
and T-Gait + Face) in the decision level, higher rank-1

CCRs can be achieved on the most challenging probe
TB (Fig.3(b)). On the 3 probe sets, decision-level fu-
sion of these two sources can always deliver stable per-
formance (Fig. 3(a)-3(d)).

Generally, the performance is very competitive when
the weight is within a certain range of small values (e.g.,
0.1 ≤ ω ≤ 0.3). The performance decreases when set-
ting ω too high or too low. There are two extreme cases
according to (7): when ω →∞, the performance converges
to the one of face recognition system (i.e., KFA + Face in
this paper), and when ω = 0, it becomes a gait-based RSM
system. For a general multimodal-RSM system, given the
fact that it is difficult to collect representative validation da-
ta (which covers all the possible covariates) for parameter
tuning, it remains an open question to find the optimal ω.
Nevertheless, experimental results suggest that very signif-
icant performance gains can be achieved by assigning face
score a relatively low weight. In this case, the weak clas-
sifiers are strengthened without sacrificing the diversity of
the whole multiple classifier system.

Due to the unpredictable nature, elapsed time is often
deemed as the most challenging covariate factor in the con-



Experiment N B S TN TB TS Overall
#Seq. 310 310 310 32 32 32 -

Rank-1 CCRs
GEI + Eigenface [10] 97 63 65 47 50 28 71.9

Audio + Depth + GEI [9] 99 59 95 66 3 50 80.2
Proposed method 100 96 99 75 63 69 95.6

Rank-5 CCRs
GEI + Eigenface [10] 100 84 79 63 63 50 85.0

Audio + Depth + GEI [9] 100 85 99 81 28 72 91.5
Proposed method 100 98 100 80 74 78 97.3

Table 3. Algorithms comparison in terms of rank-1/rank-5 CCRs (%). Overall denotes the weighted average.

Mean Std Max Min
95.55 0.22 95.81 95.22

Table 4. The rank-1 CCR statistics (%) over 10 runs of our
multimodal-RSM system

text of human identification at a distance. Based on our
multimodal-RSM framework, performance is significantly
improved by fusing these two independent yet complemen-
tary modalities. Specifically, by assigning relatively low
weight, face is used as an ancillary information to strength-
en the gait-based weak classifiers without sacrificing the di-
versity of the whole multiple classifier system. The gener-
al performance can be further boosted by fusing classifiers
from the two sources (i.e., Gait + Face and T-Gait + Face)
in the decision level. For the rest of this paper, we only re-
port the results of this decision-level fusion (with ω = 0.3).

6.3. Algorithms Comparison

Over the 6 probe sets, we compare our multimodal-RSM
with the 3 unimodal-based methods (from Section 6.1), as
shown in Fig.4. It clearly indicates the effectiveness of our
fusion method for tackling the most challenging elapsed
time covariate. It also has superb performance when the
subject carries 5kg backpack (probe B). Since our result-
s are based on 10 runs, the corresponding maxima, mini-
ma, mean and standard deviation are listed in Table 4, from
which we can see the performance of our system is highly
stable.

We also compare our method with two recently pro-
posed multimodal methods [9, 10]. We implement the GEI
+ Eigenface [10] and quote the results of Audio + Depth
+ GEI from [9]. Table 3 illustrates the performance of the
three methods in terms of rank-1/rank-5 CCRs, and the per-
formance of our method is generally much higher. Specifi-
cally, for tackling the elapsed time, the method in [10] has
lower performance in probe TS while the method in [9]
(when face information is not fused) only has 3% rank-1
CCR in probe TB. Compared with them, our method con-
sistently has much higher performance in these cases. How-

Figure 4. Unimodal vs. Multimodal. Fusion denotes source T-Gait
+ Face and source Gait + Face are fused in the decision level.

ever, the coupled effect of elapsed time and heavy backpack
(probe TB) has larger impact on our system, with only 63%
rank-1 CCR achieved, and the accuracy is much lower than
the ones on probe TN (by 12%) and probe TS (by 6%). Nev-
ertheless, compared with the gait-based RSM systems, fus-
ing face as additional information can dramatically reduce
the error rates. Motivated by this observation, in the future,
we will fuse more soft biometric traits (e.g., height, gen-
der, age, etc.) into the proposed multimodal-RSM system
to further boost the performance.

7. Contributions, Limitations, and Future
Work

In this work, we extend the existing RSM framework [5]
by allowing other modalities (e.g., face) to be fused. Face
is deemed as a soft biometric trait to provide additional in-
formation to strengthen the weak classifiers in terms of dis-
crimination capability, without compromising the general-
ization power of the whole system. Based on the updated
voters (by fusing face information), combining the T-Gait-
based and Gait-based RSM systems in the decision level
can further reduce the error rate. The proposed multimodal-



RSM system has much higher performance than the uni-
modal systems and other multimodal methods.

Although additional experiments and theoretical findings
are necessary to draw the final conclusions on the benefit of
fusing face information, this work empirically demonstrates
an effective way on combining multi-modalities informa-
tion to tackle the most challenging elapsed time covariate,
which may also potentially include the changes of clothing,
shoe, carrying status, etc. However, our experiments are
based on indoor environments with well segmented silhou-
ette and face, while in the outdoor environments, segment-
ed data based on background substraction methods [10, 19]
can be relatively noisy. In the future, we will evaluate our
method on the more challenging outdoor databases (e.g., the
USF dataset [19]). Besides, we will also explore how to ef-
fectively fuse other soft biometric traits like age, gender,
height, etc. into this RSM-based system to further improve
the performance on challenging problems.
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