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This chapter discusses the use of biometrics techniquaswidtrensic science. It outlines the
historic connections between the subjects and then exarface and ear biometrics as two
case studies to demonstrate the application, the challeargithe acceptability of biometric
features and techniques in forensics. The detailed exaiminstarts with one of the most
common and familiar biometric features, face, and then é@xesnan emerging biometric
feature, ear.

1.1 Introduction

Forensic science largely concerns the analysis of crimexistence, the perpetrator(s) and
the modus operandi. The science of biometrics has beenapéngl approaches that can
be used to automatically identify individuals by personamcteristics. The relationship
of biometrics and forensics centers primarily on identifyipeople: the central question is
whether a perpetrator can reliably be identified from scafrerime data or can reliably
be excluded, wherein the reliability concerns reasonabldotd The personal characteristics
which can be used as biometrics include face, finger, irig, gar, electroencephalogram
(EEG), handwriting, voice and palm. Those which are suitefibtensic use concern traces
left at a scene-of-crime, such as latent fingerprints, pahtgor earprints, or traces which
have been recorded, such as face, gait or ear in surveiladee.

Biometrics is generally concerned with the recognition mdividuals based on their
physical or behavioral attributes. So far, biometric téghas have primarily been used to
assure identity (in immigration and commerce etc.). Theskrtiques are largely automatic
or semi-automatic approaches steeped in pattern recoguaitid computer vision. The main
steps of a biometric recognition approach are: (1) acdoisiof the biometric data; (2)
localization and alignment of the data; (3) feature extomctand (4) matching. Feature
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extraction is often the pivotal part of this workflow. The tmetric studies are concerned with
finding a set of features, which provides the least devidhetween the different samples
of one individual and most separability between the sampiieme individual and the rest
of the population. Such a feature set will provide the besinck for individualization. In
fingerprint recognition, the most popular and widely usestdees are the minutiae-based
feature. Such level of consensus, however, has not beehagdor most of the biometrics
traits and the best set of features is subject to constantiag#ion.

One of the earliest attempts to use biometric data for ifieation dates back to the
1880s when the French criminologist Alphonse Bertillongm®ed a method based on
anthropometric measurements. Bertillon suggested thikodeas a means for classification
and sorting of the records of individuals and searching aptloem (Bertillon 1893). In 1890,
Bertillon set forth a set of standards for forensic photpgsaHe also developed a taxonomy
to describe some of the physiological features of the hewiiding: nose, forehead, and
ear. He called thigortrait parlé or spoken portrait(Bertillon 1890). The combination
of the anthropometric measurements and $peken portraitdeveloped by Bertillon is
called Bertillonage and was fast adopted by the police and the judicial systensunil
the same time, Hendry Faulds proposed the use of fingergontslentification (Faulds
1880). Although fingerprints were first considered with siégm, they gradually replaced
Bertillonage as the main method of forensic identificatiespecially after the West v. West
(1903) case concerning a pair of suspects who could not bentliguated by the Bertillon’s
methods. Among the advantages of fingerprints over Barmtilie was their relative ease of
use and that one could not find traces of Bertillonage’s apthmetric measurements at the
scene of crime while fingerprints were in abundance. The thdeelopments in biometrics
largely followed the development of computer vision tecfuas, enabling identification by
other bodily attributes.

In Frye v. United States 1923, a federal court was faced with question of expert
evidence admissibility. The court concluded that the experdence could be admitted
to court only if this expertise had gainegeneral acceptancén the field in which it
belongs. In 1993, in Daubert v. Merrell Dow Pharmaceutiealsew standard for expert
evidence admissibility was introduced by the U.S. supremgrtc In this, the proffered
expert testimony must be shown to be based on reliable fdiomda To show this, it is
required to determine if the proffered science has beewrdeét this testing was based
on a sound methodology and also to take into account thetsesithis testing (see also
the Daubert principle in Chapter 1). This new standard wasidered as a paradigm shift
(Saks and Koehler 2005) and it was suggested that fingespold be one of the first
forensic identification methods to make this transitiorceithe required large databases
already exist in this field. In fact, the use of handwritingldimgerprint evidence has been
challenged for use in court procedure in 1999, leading taudysof whether fingerprints
are permanent and unique (Pankanti et al. 2002). This raigederns in: the fallibility of
fingerprint evidence; the performance in degraded imagbey/;performance of available
techniques and the need for its improvement. Such debatat isew in science since the
development of any new technique must be justified in ternsofetal use. Further, when
it is to be deployed in serious crime investigations wherpigitunent can be severe then
error cannot be tolerated. Indeed, the need for individatibn as a forensic paradigm
was later to be questioned (Cole 2009). The current statehefart of biometrics in
forensics is more nascent than established. The first IBERIInternational Workshop on
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Biometrics and Forensics (IWBF) was held only recently inyea013, arising from the
EU-sponsored ICT COST Action IC1106 on Integrating Bionestiand Forensics for the
Digital Age (http://www.cost.eu/domairactions/ict/Actions/IC1106). Just earlier the first
Workshop on Databases in Biometrics, Forensics and Sg@pilications (DBforBFS) was
held as a satellite workshop of the 2013 BTW Conference (tabdae systems in Business,
Technology and Web). The technical programs for these wwops considered face, hand-
based, behavioural and other biometrics and forensicsthtegevith considerations of
performance and database construction, especially fengic deployment and analysis.
There have been other previous conference sessions, ansuticessful emergence of
conferences in new specialist topics generally underlié®nly their contemporary nature,
but also the importance of an emerging new subject.

When fingerprints were suggested by in 1880, little invesiigahad been performed
over their individuality and there was no mention of the emates for the identification
predictions. In courts, other expertise were also beingreff and admitted which seriously
lacked the backing of proper scientific testing and stagstmeasures of performance.
In this respect, many mistakes were made and are still beiademSaks and Koehler
(2005) reported that in 86 DNA exoneration cases the errertddorensic science testing
errors is ranked very high at 63% and that it is second onlyht @yewitness errors
with 71%. In terms of performance, the main aim of biometigdo verify if a person
has a claimed identity (a so callemhe-to-one matchijgand identification ¢ne-to-many
matching where a subject is compared with a database). In forendies,conclusion
concerns likelihood between a suspect and evidence. Inrfirigts evidence can lead to
three conclusions: individualisation, exclusion or incloisiveness (Champod 2000). The
probability of matching can also be graded as impossiblssipte, probable or very likely.
In DNA analysis, the potential error rate is usually couclirederms of the likelihood of
mismatch, which is another representation of probability.

In terms of the literature, the majority of approaches dbsanalysis of latent fingerprints.
However, there is also use of voice for speaker identificatface identification, dental
biometrics, DNA and handwriting, which are all establish@ometrics in their own right
(Dessimoz and Champod 2008). In terms of emerging bionsetso far there has been
one deployment of gait biometrics for identification (Botikh et al. 2011; Guan and Li
2013; Guan et al. 2013) and there is now a system aimed at secfilwama et al. 2012).
Soft biometrics is a more recent interest and can handle lality surveillance data (Park
and Jain 2010). Ears were considered in Bertillon’s piongeearly study where the ear
was described as the most identifying part of an individuel proposed a method for ear
classification, and the length of the ear was one of the elmaasures that were used. One
early forensics study (Spaun 2007) described interestdialfand ear individualization,
adding the possibility of exploring additional biometrioscluding hands and gait and
observing that additional ear analyses are needed; insfedatabases of hundreds of ears,
thousands of ears, or more.

In the remainder of this chapter, we will concentrate on taeecstudies discussing the
forensic possibilities of face and ear as biometrics. Facié natural means for human
beings to recognise each other. However, currently no &utpmatic face recognition system
is accepted by the judicial system. Section 1.3 introdubesmianual and computer-aided
forensic face recognition; discusses the disparities éetwthe behaviour of the current
automatic face recognition systems and that which is neéatefbrensic application; and
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outlines the current progress towards addressing theettgas existing in face recognition.
Section 1.4 examines an emerging biometric ear. The ddtak@amination shows the
challenges that exist in introducing a new biometric featimto forensics. Ear biometrics
has been chosen as the second case study as it is a potdmjaditant biometric feature,
yet its use is still under question. The current state of &drwalidation of ears as a
forensic tool is discussed and a set of morphological featalong with an analysis
of their discriminatory powers are presented. These featare important in deciding
whether there is enough information available for iderdiiien in case of missing features.
The terminology associated with these features may aldgstagigh communicating ear
comparison results to juries, an important step in makirgh®vidence effective at trial.
But first, in section 1.2, we will give an overview of the gealdsiometric system operation
modes and performance metrics.

1.2 Biometrics Performance Metrics

A biometric system can be used as an assistant tool in thadierecenarios for helping on
gueries against a large enrolled database. The query caorigeta-many seardio determine
potential matches to a probe from the gallery, ona-to-one chedbo verify the identity of an
individual. These two tasks are referred tddentificationandverificationin the biometrics
research community

In identification, the biometric system searches an erdaltabase for a gallery sample
matching the probe sample. An ordered list of topatches may be returned as the possible
identities of the probe. The performance of the system indegtification task is measured
in terms ofrank-n recognition ratevhich is the rate at which the true association has been
included in the toj matches to the probe. Recognition rate is the simplified fermank-1
recognition rate where the system returns a single matelneht match, as the most probable
association for the probe sample.

On the other hand, verification is the task where the biomeyrstem attempts to confirm
an individual's claimed identity by comparing the probe géaio the individual’s previously
enrolled sample. Verification is based on a decision thidshithis threshold is set by
comparing all sample pairs in the gallery. The thresholdhissen to separate the genuine
scores distribution from the impostor scores distributiod give the best performance based
on one of the following metrics:

e False acceptance raf@AR) is the rate at which the comparison between two differe
individuals’ samples is erroneously accepted by the systethe true match. In other
words, FAR is the percentage of the impostor scores whichigheer than the decision
threshold.

e False rejection ratdFRR) is the percentage of times when an individual is nothred
to his/her own existing template. In other words, FRR is theepntage of the genuine
scores which are lower than the decision threshold.

e Equal error rate(EER) is the rate at which both acceptance and rejectionrseae
equal (i.e., FAR=FRR). Generally, the lower the EER valhe higher the accuracy of
the biometric system.

1Biometrics Glossary by National Science & Technology CouiNSTC) Subcommittee on Biometrics, 2013
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Automated biometric techniques can be used to analyze aegpiet biometric traces in
the forensics scenarios such as in investigation of a caehtffense and the demonstration
of the existence of an offense (Meuwly 2012). These taskasually interrelated with each
other. Biometric techniques are used to help in the three mays:

e Decision.In identity verification and identification, a decision ne¢d be made. Such
applications include: criminal ID management, suspectiaina identification, etc.

e Selectionln forensics intelligence and investigation, biometriastiniques are used to
link cases from biometric traces and generate short listaoflidates.

e Description.In forensic evaluation, biometrics are used to describevidential value
of the biometric evidence.

1.3 Face: the Natural Means for Human Recognition

Since the advent of photography, both government agennegi@vate organizations have
kept face photo collections of people (e.g., personal ifleation documents, passports,
membership cards, etc.). With the wide use of digital casyesmart phones and CCTVs, face
images can be easily generated every day. In addition, repygattiese images can be rapidly
transmitted and shared through the highly developed saeiabork such as Facebook. So
face is almost the most common and familiar biometric tnaibur daily lives. There are
more opportunities to acquire and analyze face images oéstigmed person (e.g., suspect,
witness or victim) for forensic investigation purposes.

Face recognition has a long history and receives reseatetests from neuroscientists,
psychologists and computer scientists (Sinha et al. 2@éMpared with other biometric
traits, face is noperfect For example, it is generally less accurate than other fasfns
biometrics such as fingerprint and can potentially be affiédiy cosmetics more easily.
However, face has its own advantages that make it one of tis¢ pneferred biometric traits
for human recognition:

e Biological nature Face is a very convenient biometric characteristic usedusgans
in the recognition of people, which makes it probably the tmamnmon biometric
trait for authentication and authorization purposes. B@ngle, in access control, it
is easy for administrators to track and analyze the authdperson from his/her face
data after authentication. The help from ordinary userg.,(@dministrators in this
case) can improve the reliability and applicability of teeagnition systems. Whereas
fingerprint or iris recognition systems require an experthwirofessional skills to
provide reliable confirmation.

e Non-intrusion Different from fingerprint and iris collections, facial ages can be
easily acquired from a distance without physical contaebgdfe feel more comfortable
for using face as identifier in daily lives. A face recognitisystem can collect
biometric data in a user-friendly way, which is easily adedby the public.

e Less cooperationCompared with iris and fingerprint, face recognition haswer
requirement of user cooperation. In some particular apgtins such as surveillance,
a face recognition system can identify a person withouvagtarticipation from the
subjects.
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The first attempts we are aware of to identify a subject by @mng a pair of facial
photographs was reported in a British court in 1871 (Portedt ®oran 2000). Face
recognition is one of the most important tasks in forensie#tigations if there is any
video or image material available from a crime scene. Facemsperts perform manual
examination of facial images to match the images of a susgiace. The use of automated
facial recognition systems will not only improve the effiody of forensic work performed
but also standardize the comparison process.

1.3.1 Forensic face recognition

In the past, before the use of computers, face recognition aleady widely used in
forensics. The work of Bertillon (1893) was one of the firssteynatic approaches for face
recognition in forensics as we mentioned in Section 1.1reuly forensic face recognition
is mainly performed manually by humans. In a typical foreriace recognition scenario, a
forensic expert is given face images from a suspect (e.q@;shot images) and a questioned
person (i.e., the perpetrator). The forensic expert wikk@i value which represents the degree
to which the these images appear to come from the same person.

There are four main categories of approaches in forensgcrizaognition (Ali et al. 2010;
Dessimoz and Champod 2008): holistic comparison, morghcdbanalysis, anthropometry,
and superimposition.

e Holistic comparisonIn holistic comparison, faces are visually compared as alevh
by the forensic experts. This is the simplest way and can benpeed as a pre-step
for other methods. Automatic face recognition systems eatidsigned to help for this
not only on one-to-one comparison (i.e., verification) dsban one image compared
to a large-scale gallery database (i.e., identification).

e Morphological analysisIn morphological analysis, the local features of the face
will be analyzed and compared by the forensic experts whotr@iaed in that
discipline. They carry out an exhaustive analysis on thdlaiities and differences
in observed faces, trait by trait on the nose, mouth, eyebraic., even the soft
traits such as marks, moles, wrinkles, etc. The locationdistdibution of local facial
features are considered but not explicitly measured costpaith anthropometry
based approaches. One example of the examined facial deaturrently used by
the Netherland’s Forensic Institdt@re summarised in Table 1.1 (Meuwly 2012).
It can be seen from the table that both internal and extemetufes of the face
are considered. These features are usually fall into twegceites (Spaun 2011):
(1) class characteristicsvhich can place an individual within a group (e.g., facial
shape, shape of the nose, freckles, etc.) andn(fyidual characteristicavhich are
unique to distinguish the individual (e.g., skin marks,rscareases, wrinkles, etc.).
Generally, the forensic experts need to make the conclusased on the following
comparison criteria for these local features: §iilar. imaging conditions are not
optimal, in a sense that differences might be invisiblefN@)observationobservation
is not possible due to circumstances; and@#jerent observed differences may be
explained by differences in the imaging conditions.

http:/iwww.forensicinstitute.nl/



On Forensic Use of Biometrics 7

Table 1.1 Example of facial features examined

Feature Characteristic

Face Shape, proportions, hairline

Forehead Shape, bumps, horizontal creases, eyebrows

Eyes Distance, angle fissure, colour, eye slit shape, creaseswatdes
Nose Length, width, prominence, symmetry, shape of tip and nostnigjse
Mid part of face Cheekbones, cheek line, cheek-eye groovekatese groove

Ear Size, protrusion, shape of helix and antihelix, darwin’s tuberctéhea
Mouth Size, shape, upper lip, lower lip

Mouth area Shape of philtrum, moustache and shadow, beard amsishad

Chin Shape, groove between mouth and chin, dimple, double chin

Low jaw shape

Throat Adam’s apple

Distinctive feature  Skin marks, scars, creases and wrinkles

¢ Anthropometry Anthropometry refers to the measurement of the human iohat,
which can be used for human recognition. Different from nhofpgical analysis, in
face anthropometry, the quantification measurements épatial distance and angles)
between specific facial landmarks (e.g., the mid-line pbietween the eyebrows,
the lowest point on the free margin of the ear lobe, the midpof the vermilion
border of the lower lip, the most anterior midpoint of therghétc.) are used for
comparison. However, usually blemishes on the face sucbaais are not considered.
When anthropometric measurements are taken from photognagher than from
the face of a living person, it is callgghoto-anthropometryThe face images being
compared should be taken from the same angle and directibhasa high quality
to be able to detect the facial landmarks. These requiresmimit the use of
anthropometry approaches in uncontrolled scenarios @igeeillance situations). At
present, anthropometry based methods are suitable to 8¢éomeclude the questioned
person rather than to make a positive identification.

e Superimpositionin superimposition, one face image is overlaid onto arrcéine the
forensic experts need to determine whether there is anmaéghand correspondence
of the facial features. These images should be captured tineesame pose and be
processed to the same scale. This category of approachesasaurate due to their
high requirement that the compared images should be taldar thre same conditions.
Generally, in forensics, superimposition can be performetl only between two
face images but also between a face and a skuli@ibaet al. 2011). In addition,
superimposition is also widely used in forensic facial restauction (Aulsebrook et
al. 1995) which aims to recreate the face of an individualgsehidentity is often not
known) for recognition purpose. Automatic face recogmitdystem can be developed
in the direction of modelling a 3D face/head model to compétk a 2D query image.
In this way, the pose, angle and orientation of the face caadpested using the 3D
models.

In holistic comparison, conclusions are generated by llis@mparing images as a
whole. Morphological analysis is the most applicable in grodforensics. Anthropometry
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Pre-processing

,/N ﬂ Query
Face Feature
( ) :> Detector :> Extractor :> Matcher :> Score

ji

Face image Reference

Enrolled
database

Figure 1.1 Framework of an automatic face recognition system.

and superimposition are practiced by jurisdictions, batdhtcomes are highly sensitive to
the subject’s pose and thus may easily produce inaccursi#tseThe choice of a specific
approach depends on the face images to be compared andltyemérsion of these methods
is applied in the real case analysis scenarios.

Currently there is no standard procedure and agreed upateljé among forensic
researchers. Some working groups such as the Facial Idatitfi Scientific Working Group
(FISWG) of FBI, the International Association for IdentificatiolA(%) and the European
Network of Forensic Science Institutes (ENBSks well as several international agencies
such as the London Metropolitan Police are devoting to @gvstandards and guidelines for
forensic face comparison.

Notice that in the aforementioned forensic face recogmitinethods, ears are also
considered as an external feature of the face. The ear is poriamt emerging biometric
trait and is stable throughout adulthood. We will discuss tise of ear biometrics in the
forensic tasks later.

1.3.2 Automatic face recognition techniques

A general automatic face recognition system usually ctgefghe following modules: a face
detector, a feature extractor and a matcher (Figure 1.8 fdte detector crops the face area
from the background of an image. The feature extractor tiénaas effective information
from face images for distinguishing different individudlissually pre-processing such as face
alignment by the facial landmarks and face normalizatiog.(ecale, illumination condition)
will be performed before feature extraction. Then the mataetill compare two faces (e.g.,
one is from query and one is from the enrolled database) byettracted features then

Shttps://www.fiswg.org/
“http://www.theiai.org/
Shttp://iwww.enfsi.eu/
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a similarity score is calculated. Face recognition is bamedhe similarity scores and its
performance highly relies on the extracted features anskifleation algorithms used to
distinguish faces.

In the early time, the main recognition approaches are gganfeature-based methods
which rely on measurements between specific facial landsnarkis is similar to the
anthropometry based methods in the forensic face recognitine first attempt to automatic
face recognition started by Chan and Bledsoe (1965) in a-aatbimated mode where a set
of facial features were extracted from the photographs lmgans. The first fully automatic
face recognition system was presented by Kanade (1973phwhas a milestone at that
time. In 1990s, the linear subspace analysis approachestatistical models became the
mainstream. Turk and Pentland (1991) applied Principal @orent Analysis (PCA) on
face images, which was referred to Egenface These eigenfaces were the eigenvectors
associated to the largest eigenvalues of the covarianagxrofithe training samples, which
ensured the data variance was maintained while eliminatingcessary existing correlations
among the original features (i.e., dimensions). PCA baggioaches greatly reduced the
computational cost for high-dimensional data and inspireate active research in face
recognition. Fisherface (Belhumeur et al. 1997), which b&sed on the Liner Discriminant
Analysis (LDA), also performed dimensionality reductiorhile preserving as much of
the class discriminatory information as possible. Othepytar methods included Local
Feature Analysis (LFA) (Penev and Atick 1996), Elastic Gr&atching (EGM) (Wiskott et
al. 1997), etc. From the late 90s to present, the researchcef fecognition has focused
on the uncontrolled and uncooperative scenarios (e.ge lapse changes, illumination
and expression variations, low resolution, partially adeld faces, etc.). Locally Linear
Embedding (LLE) (Roweis and Saul 2000), illumination coredel (Georghiades et al.
2001), 3D Morphable Model (Romdhani et al. 2002), Local Byn@attern (LBP) (Ahonen
et al. 2006) and Sparse Representation based Classifi¢gfD) (Wright et al. 2009) are
the representative methods in this period. A systematiesusf automatic face recognition
can be found in the work of Zhao et al. (2003).

The performance of automatic face recognition technigasdken evaluated in a series of
large-scale tests conducted by the National Institute afi@irds and Technology (NIST
such as the Facial Recognition Technology evaluation (FEREhillips et al. 2000), the
Face Recognition Vendor Test (FRVT) (Phillips et al. 2018 ¢he Face Recognition Grand
Challenge (FRGC) (Phillips et al. 2005). Over the past desathajor advances occurred
in automatic face recognition. The false reject rate (FRR}he best performing face
recognition algorithm has decreased from 79% in 1993 to (32610 at a false accept rate
(FAR) of 0.1% (Phillips 2012). The automatic face recogmithas been successfully used
in the field of security (e.g., access control, video sulaede, etc.), but the performance
in unconstrained environment is still unsatisfactory. A fnd systematic assessment of the
automatic face recognition technology must be conductéeurealistic conditions before it
can be utilised for forensic applications.

1.3.3 Challenges and trends of face recognition

Like in many biometric applications, the appearance \viaratcaused by the unconstrained
conditions are still challenges for face recognition in guntext of forensic scenarios.

Bhttp://www.nist.gov/
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Currently automatic face recognition system is only regdrds an assistant tool in forensic
tasks. This section will discuss several specific face neitiog problems which may also
be difficult even for forensic experts. These challengesilshbe addressed in the future
research (Jain et al. 2011).

Partial/occluded face recognition

In the real-world environment, a face may be captured intrantyi pose without the user’s
cooperation so it's very likely that the image only containpartial face. Faces are easily
occluded by facial accessories (e.g., sunglasses, scrfyéil), objects in front of the
face (e.g., hand, food, mobile phone), extreme illumima{e.g., shadow), self-occlusion
(e.g., non-frontal pose) or poor image quality (e.g., bhg). In forensic face recognition,
for example, it is needed to find a suspect in the crowd by nvagch partially occluded
face with enrolled database. The difficulty of occluded femmognition is twofold. Firstly,
occlusion distorts the discriminative facial features araeases the distance between two
face images of the same subject in the feature space. Tledlass variations are larger
than the inter-class variations, which results in pooreogaition performance. Secondly,
when facial landmarks are occluded, large alignment emwsuslly occur and degrade the
recognition rate Ekenel and Stiefelhagen (2009).

An intuitive idea for handling occlusion in automatic faacognition is to detect the
occluded region first and then perform recognition using timt unoccluded parts. However,
the types of occlusions are unpredictable in practicalages. The location, size and shape
of occlusion are unknown, hence increasing the difficultgdggmenting the occluded region
from the face images. A more practical way is to perform redimn with the presence of
occlusion. There are two main categories of approachessmifection.

The first is theeconstruction based approachehich treat occluded face recognition as a
reconstruction problem (He et al. 2011; Jia and heaz 2008; Naseem et al. 2010; Wagner
et al. 2012; Wei et al. 2012; Wright et al. 2009; Yang and Zhad02 Zhang et al. 2011).
The sparse representation based classification (SRC) sdgdny Wright et al. (2009) is a
representative example. A clean image is reconstructed &émo occluded probe image by a
linear combination of gallery images and the basis vectbemcclusion dictionary. Then
the occluded image is assigned to the class with the minietalnstruction error.

The second category is thecal matching based approachdsacial features are extracted
from local areas of a face, for example, overlapping or neerdapping patches of an image,
so the affected and unaffected parts of the face can be adhalgsisolation. In order to
minimize matching errors due to occluded parts, differértegies such as weighting (Tan
et al. 2009), warping (Wei et al. 2013a,b), voting (Wei and2DiL3), local space learning
(Martinez 2002; Tan et al. 2005) or multi-task sparse representi&arning (Liao et al.
2013) are performed.

Klontz and Jain (2013) conducted a case study that used thgiaphs of the two
suspects in the Boston Marathon bombings to match againsickglound set of mug-
shots. The suspects’ photographs released by the FBI wetared under uncontrolled
environment and their faces were partially occluded by ERssgs and hats (Comcowich
2013). The study showed that current commercial automatie fecognition system had the
notable potential to assist law enforcement. But the matchtcuracy was not high enough
and more progress must be made to increase the utility innst@ned face images.
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Heterogeneous face recognition

Heterogeneous face recognition involves matching two fiaeges from alternate imaging
modalities. This is very practical in forensic scenariost iAstance, in the London riots in
2011, the police used face recognition system to help findithesuspects involved in the
unrest. The images of suspects are came from various spargestill images captured from
closed-circuit cameras, pictures gathered by officergafygotaken by the police helicopters
or images snapped by members of the public. These imageswatyufrom various sources
from different modalities. In addition, in some extremeiattons, only a particular modality
of a face image is available. For example, in night-time emments, infrared imaging may
be the only modality for acquiring a useful face image of st But the stored mug-shots
by the police are visible band images. Another example iskie¢ch-photograph matching.
When no photograph of a suspect is available, a forensiclsketiften generated according
to the description of an eye-witness. Matching sketchesnagéace photographs is very
important for forensic investigation.

There are three categories of approaches in current hetegogs face recognition. The
first one is thefeature based methofKlare and Jain 2010; Klare et al. 2011; Lei and Li
2009) which represents face images with discriminativeufes that are invariant in different
imaging modalities. The second one is gynthesis based methdtiang and Wang 2004;
Wang and Tang 2009; Zhang et al. 2010) which converts a faagérm one modality (e.g.,
sketch) into another (e.g., photograph). And the third anéhé prototype based method
(Klare and Jain 2013) which reduces the gap between two ntiedddy using a prototype as
a bridge. 2D-3D face matching is a future research diredince face can be represented by
heterogeneous features in the 3D and 2D modalities in thevardd cases.

Face recognition across aging

Facial aging is a complex process that affects both the shagdaexture (e.g., skin tone
or wrinkles) of a face. The typical application scenario add recognition systems against
aging effect is to detect if a particular person is preseatmnevious recorded database (e.g.,
missing children identification and suspect watch-listoatf)eAs the age between a query and
a reference image of the same subject increases, the agafiracognition system generally
decreases.

In automatic face recognition, aging effect in human facas heen studied in two
directions: (1) developingge estimation techniqués classify face images based on age
(Geng et al. 2007; Guo et al. 2008) and (2) developaging robust systemt® perform
recognition. In the early time, researchers tried to siteuthe aging effects by developing
the aging function and then performing automatic age esiimdased on that (Lanitis et
al. 2002). But modeling the complex shape or texture vamatiof a face across aging is a
very challenging task. Nowadays, researchers proposeetiergtive aging model (Li et al.
2011) which learns a parametric aging model in the 3D donmagenherate synthetic images
and reduce the age gap between query and reference imagesi@h challenging aspect
of face recognition across aging is that it must addresstlafirainconstrained variations as
well. Figure 1.2 shows the face samples of the same indilairass aging. Pose, expression,
illumination changes and occlusions can occur when imagesken years apart.
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Figure 1.2 Face samples of the same individual across aging.

1.3.4 Summary

Face is the most natural way of recognition for human beiAgsch variety of approaches
for face biometrics have been proposed and its basic patsgewell understood over past
several decades. Face recognition technology has beeidemtsas the next generation tool
for human recognitiod. Automatic face recognition is becoming an indispensatxé for
modern forensic investigations.

However, currently there is no generally accepted stanfdarfbrensic face comparison.
Many challenging problems related to forensic face redagmistill exist. A full and
systematic assessment of the automatic face recognitbnaéogy must be conducted under
realistic conditions before it can be utilised for forerspplications.

Up to now, we have introduced the forensic use of face retiognand discussed some
challenges needed to be addressed in the future. In theaesalsic scenarios, usually a
combination of information from different biometric traits applied for case analysis. In the
following sections, we will introduce one emerging bionedr- ear which is highly related
to face but has its own advantages.

1.4 Ears as a Means of Forensic Identification

Although ears are an external part of the head, and are ofsdnlesrthey do not tend to
attract human attention and a vocabulary to describe thémking. As for the latent prints,
the common ones to be found in crime scenes are of fingertghssp and feet. Although

"see FBI's the Next Generation Identification (NGI) progrédunt p: / / www. f bi . gov/ about - us/ ¢j i s/
fingerprints_biometrics/ngi
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earprints may also be found in crime scenes fingerprints arehnmore abundant. The
fact that the forensic use of ears and some of the other biaedits were halted by the
advent of fingerprints is partly due to this practical adeget Dutch courts have admitted
numerous cases of earprint related evidence (Van der LU§QOT)2Earprints have also been
used as a means of personal identification in other counstieh as the United States, UK,
Germany and Switzerland. In Germany both earprints andneagés have been used for
identification (Champod et al. 2001). In Switzerland, latarprints have been used to assist
in the early stages of investigation in burglary cases (RMark Dallagher 2002). While
in a number of higher profile cases the reliability of earpewvidence has been challenged,
been refused admittance or caused erroneous convictibesevidence regarding earprints
is mainly contested due to three main factors: (1) presseferichation; and (2) the lack of
generally accepted methodologies for comparison and €3Jpttk of large scale testing.

A study of potential identification capabilities of ears vipesformed by Alfred lannarelli
who examined over 10,000 ear samples over 38 years (lalirkd89). He developed the
lannarelli System of Ear Identification. His system essdigtconsists of taking a number of
measurements from a set of landmark points on the ear. Héuctat:

"Through 38 years of research and application in earololyg, duthor has
found that in literally thousands of ears that were examibpgdisual means,
photographs, ear prints, and latent ear print impressitmsyo ears were found
to be identical.”

Despite his extensive experience with different forms ofrearesentation in forensics, in
1985 the Florida trial court of State v. Polite 1985 did natagnize him as an expert on
earprint identification on the grounds that his ear idemtifan method was not generally
accepted in the scientific community. The court also raisaucerns over the effects of
pressure deformation on the appearance of earprints andoaky the lack of studies
concerning the comparison of earprints and refused to &dbepearprint identification
evidence altogether. The later development of ears as aelimmwvas to rely on the
pioneering work of lannarelli.

Ear biometric recognition has primarily been focused orowuattic or semi-automatic
methods for human identification or verification using 2D Br&ar images. In comparison
to the forensic references to the usage of ear morphologyefaygnition, the automated
recognition of ear images in the context of machine visioa recent development. Burge
and Burger (1998) were amongst the first to investigate aatednrecognition of ears.
Inspired by the earlier work of lannarelli, they conductgat@of of concept study where the
viability of the ear as a biometric was discussed theorigfjda terms of the uniqueness and
measurability over time, and examined in practice throlghmplementation of a computer
vision algorithm. Since then, there have been many ear litomeethods looking at 2D and
3D images of the ear while also attempting to overcome ahgdle such as occlusion, pose
variation and illumination conditions.

The advantages that ear biometric studies can offer thedfeder forensic identification
are twofold. Firstly, to advance and inform earprint reatgn methods, and secondly, to
introduce and facilitate the new emerging application @hniification at a distance from
surveillance footage. Pressure deformation is one of thie masons why earprint evidence
is contested. Being composed of malleable parts, the appeaof an earprint can be much
influenced by the amount of pressure which is applied in ngattie print. A 3D model of the
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ear, as offered by 3D ear biometrics methods, may be usefurkiticting the appearance of
its earprint under different amounts of pressure. Anotlirddring factor for the application
of earprints for identification is the missing features of #ar in an earprint. Due to the
different elevations of the external ear parts, some of #recemponents are commonly
missing in earprints. Owing to the missing information, @ncbe debated that earprints
present less variability than ear images. We will show thatihsights offered by the ear
biometric studies as to the degree of discrimination predidy different ear features can be
used to evaluate the information content of earprints feniification.

Ear images from surveillance cameras have also been coedid®r forensic
identification. Although this is considered a new developtria the field of ear forensic
identification, it is the core problem in ear biometrics. $hioe methodologies developed in
ear biometrics may be readily transferable for use in thiieation. Automatic biometrics
methods can also offer desirable properties for efficienot@ssing of large datasets and
attribute the performance and error rate directly to spenifthodologies. Using automatic
biometric methods can also provide reproducible resulissdiminate operator bias.

Next, we will review earprint identification, its role as &msic evidence, its shortcomings
and possible improvements. Since the forensic use of edbiasntric is in a different stage
of its life cycle compared to face, as well as looking at thehuds of comparison, we will
discuss the earlier question of admissibility in court. Wk tlien look at specific automatic
biometric methods and how they can be used for forensic iftiion from surveillance
capturing. Finally, we will review the discriminant capiixs of individual ear features and
how they can be used to infer the level of confidence in priedtistfrom data which are prone
to having missing features.

1.4.1 Earprints in forensics

Earprints, which may be found in up to 15% of crime scenest{Rettal. 2005), are latent
prints left behind as a result of the ear touching a surfamegkample while listening at
a door. In a legal context, the evidence regarding earpdatdd be utilized for various
purposes including: dismissing a suspect, increasingeaeciglagainst a suspect or identifying
possible suspects (Meijerman et al. 2004). Earprints haea bsed as a means of personal
identification in different countries, however, in a numbécases the reliability of earprint
evidence has been challenged. Figure 1.3 shows some saanpitants.

Earprint — a challenged forensic evidence

In the cases involving earprint evidence for positive idfadtion, two issues have been
the main source of dispute. One is the admissibility of thiglence and the other is its
reliability. In the United States and under the Daubert ddaah, all forensic expertise is
subjected to a scientific scrutiny over its reliability anttaracy. In this setting, the judge
acts as gyatekeepernd determines whether the proffered forensic evidencardsdo that
standard. The forensic science in question does not neeel ¢orbr free to be admissible;
indeed there is always a level of error involved. However,easure of this error should be
made available through rigorous testing. This, howevemis straightforward task while the
question regarding the size of the dataset, which is neaxlettain the required reliability
and the statistical evaluation of performance, has not bddressed.
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Figure 1.3 Sample earprints (from Meijerman (2006)).

The admissibility of earprint evidence was a key issue irctse of State v. Wayne Kunze
1999. In Washington State in 1996, David Wayne Kunze waggltarith aggravated murder
amongst other charges. The key evidence against Kunze vedsrda earprint found at the
scene. Prior to the trial, Kunze moved for excluding any enie of earprint identification.
Subsequently, the trial court convened a Frye hearing omidigeer and many ear experts
and latent print experts were called. The hearing conclubatdearprint identification has
indeed gained general acceptance and thus the earprineeidvas admitted. However,
later at the appeal court, after reviewing the evidencergethis pre-trial hearing, the
appeal court concluded that general acceptance was nohedtaf there is a significant
dispute between qualified experts as to the validity of sifierevidence”, and since the
hearing clearly showed such dispute, the appeal court riladthe trial court erred by
allowing the expert witnesses to testify and that a new tras required. In the case of
State v. Polite (US, Florida trial court) 1985, the courtoatefused to admit the earprint
evidence. In excluding the earprint evidence the judgesdatoncerns over the unknown
effect of pressure deformation and insufficient scientiickground to establish reliability
and validity of earprint identification.

Relevancy is another guideline for admissibility under Bent. Relevancy is defined as
(Rule 401, Federal Rules of Evidence): "Evidence is relevaifl) it has any tendency to
make a fact more or less probable than it would be without tideace; and (2) the fact is
of consequence in determining the action”.

In the United Kingdom, in the appeal court of Mark Dallagh802, the court examined
the question of expert evidence admissibility. In 1998 hi@a €rown Court at Leeds, Mark
Dallagher was convicted of murder and sentenced to life isnpment. In this trial an
earprint discovered at the scene of crime was one of the miaitep of the evidence
against the defendant. Two expert witnesses testified beatdéfendant was the certain
or highly likely maker of the latent earprints. No expertdenice was called on behalf
of the defendant and the defence did not seek to exclude fderme of the prosecution
experts. Fresh evidence against the use of earprints fitiveasientification was offered as
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grounds for appeal. The appeal court subsequently refiredppellant’s argument that if
this expert evidence was available at the trial the prosmtatexpert evidence should have
been excluded. For this, references were made to other,as#sas R. v. Clarke 1995 on
facial mapping expert evidence:

"It is essential that our criminal justice system shouldetéako account modern
methods of crime detection. It is no surprise, thereforaf thpe recordings,
photographs and films are regularly placed before jurieediones that is done
without expert evidence, but, of course, if that real evigeis not sufficiently
intelligible to the jury without expert evidence, it has alyg been accepted that
it is possible to place before the jury the opinion of an ekpeorder to assist
them in their interpretation of the real evidence.”

And continuing:

"We are far from saying that such evidence may not be flawed, &f course,
essential that expert evidence, going to issues of idersdityuld be carefully
scrutinised. Such evidence could be flawed. It could be flguwstdas much as
the evidence of a fingerprint expert could be flawed. But itsdoat seem to us
that there is any objection in principle.”

The appeal court concluded that the expert evidence couldpossibly be considered
irrelevant, or so unreliable that it should be excluded.eflbthe appeal court eventually
quashed the conviction and ordered a retrial on the grouratsttseemed that if the fresh
evidence was given at the trial it might have affected thg'suspproach toward the crucial
earprint identification evidence.

In the appeal court of R. v. Mark Kempster 2008, the admiksilnf the ear evidence
was also a cause of debate. In 2001, Mark Kempster was cedviftmultiple counts of
burglary and attempted burglary at Southampton Crown C&ure of the main pieces of
evidence against him was a positive identification of anriatrgzhich was recovered from
the scene of crime as his earprint. He appealed against tiviction twice and in 2008 the
appeal was brought on the ground that relevant fresh evideright have undermined the
expert prosecution evidence, of positive earprint ideg#tfon. In the court of appeal, the
defence argued against the admissibility of earprint exdide The defence also argued that
while earprint evidence may be used for excluding a suspgmsitive identification cannot
be obtained using earprint evidence. Both the prosecutiondafence experts agreed that
this area of science was in its infancy. However, they dsegjion the results of comparing
the earprint found at the scene and the prints of the appelléie appeal court eventually
concluded that the earprint evidence was admissible, and be used by the jury to decide
if it was indeed the appellant who left the mark at the sceme jlidge, thus, directed the

jury:
"First of all consider the evidence of the earprint. Are youwesthat the earprint

was Mr Kempster's? If you are not sure then you must acquit Emidster on
Count1”

And the jury subsequently quashed the conviction on countrdlary. Thus, again, although
the earprint evidence was admitted its reliability was ldmged. Whether the earprint
evidence is blocked out as an inadmissible expertise oraestged on its reliability, it is



On Forensic Use of Biometrics 17

apparent that it does not hold an assured status as a fometiod for positive identification.
Next, we will look into the reasons for this and discuss asdw la more reliable earprint
evidence maybe obtained.

Pressure deformation

Due to their different elevation and flexibility, ear ridgesact differently to the changes
in pressure and cause large intra-individual variatiortge Tinknown effects of pressure
deformation is one of the main reasons why earprint evidén@®ntested. To overcome
this problem, it has been suggested that for each ear theotqmints can be captured
using different amounts of pressure and when comparing tb@strol prints to a latent print
only the best match would be considered. Junod et al. (204&)proposed to combine the
different earprint samples of an ear to build an earprint @hddypothesising that in practise
a perpetrator will be listening for a sound, Alberink andfirak (2007) proposed that a more
realistic dataset of control prints can be acquired by dpglafunctional force In this, the
donors were instructed to listen for a sound behind a glasacau

A different and perhaps a more comprehensive approach maffdred using a 3D model
or a 3D image of the donor ear. Combined with a model of extexaapart-wise elasticity,
the 3D model can be used to synthesize a set of possiblearihrait can be generated by an
individual ear. A 3D model of the ear can be acquired usingngeacanner (Chen and Bhanu
2007; Yan and Bowyer 2007). There are also methods which Dseag images to infer the
3D model of the ear (Bustard and Nixon 2010a; Cadavid and Aldd¢taleb 2008).

Variability and missing features

The evidence regarding the variability of ear morphologyegarded as relevant but not
directly usable in the field of earprint identification, stnicot all the parts of the ear leave
a mark in an earprint. Due to the different elevations of thiermal ear parts, some of the
ear components are commonly missing in earprints. The paitie ear which are frequently
seen in earprints are: helix; anti-helix; tragus; and &maigus, while lobe and crus of helix are
not so common (Meijerman et al. 2004). Owing to the missifigrination, it can be debated
that earprints present less variability than ear imagesgiD®z and Champod 2008). Also,
the amount of pressure can affect the amount of informatibichvhas been left behind in
the print.

Dessimoz and Champod (2008) hypothesises over the disatioin power of the features
in different representations of ear morphology data dudé¢ovirying quality of the data.
They referred to this discrimination power of the datassakectivityand discussed that the
data with highest selectivity is of ear images captured vadstrolled conditions. The rest of
the source data in order of diminishing selectivity are:igwge occluded by hair; reference
earprint; ear image taken with a surveillance camera attardie; and finally an earprint
obtained from a crime scene. Note that the traditional btaosand forensic applications
of the ear morphology are at the either end of this selegtsgiectrum. Dessimoz et al. did
not explain how they arrived at this selectivity ranking vitwer, we suspect that, in this, the
missing parts as well as the pressure deformation are thene@sons for the low selectivity
of the earprints. Indeed, there is a concern that not allrpiatiéy discriminant parts of the
ear are present in an earprint. This leads to the questionhat features there are in an
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ear shape and just how discriminant they are. The findingsuiob®metrics studies where
occlusion and therefore missing part have been investigaty be useful to this discussion.
Arbab-Zavar and Nixon (2011) have also investigated asdmthgin of each part of the ear
morphology and its discrimination powers. Ear parts arth&rrdiscussed in section 1.4.3.

Statistical analysis of performance

So far there has been relatively little analysis of earppetformance for forensic
identification. The statistical analysis of performancel aror rates corresponding to
earprint identification was the focus of the EU-funded prbjeorensic Ear Identification
(FearlID) in 2002-2005. In this project, an earprint datagtt 7364 prints from 1229 donors
from three counties was acquired (Alberink and Ruifrok 20@0r this three left and three
right earprints were gathered for each donor. Also, one ordimulated crime scene prints
were taken for one out of 10 donors. A semi-automatic clasdiin method was proposed
to compare the prints, and each pair of prints was classifiedaiching or non-matching. In
this, after the earprint was lifted from the surface, firsblyfine is drawn manually following
the earprint contour. This polyline gives a skeleton-li&gpresentation of the earprint. A set of
features are then extracted for each earprint. These é&satue the width and the curvature
of the print along this polyline. These features are eachesgmted as a one dimensional
signal where the horizontal axis is the position along thglpe and the vertical axis is the
width or the curvature at that position respectively. Adhieature vector is also extracted.
This is a point pattern representing the distribution ot#fpranatomical locations which are
manually marked by an expert. The comparison between eduobf paints is then performed
by comparing the corresponding features in the two printscére is computed showing
the similarity between the features of the two prints. Anadaarror rate (EER) of 3.9% for
comparison of reference prints (per side) and an EER of 9d8%h& comparison of simulated
crime scene prints with the reference prints are obtainiegisis method. Junod et al. (2012)
have also experimented with this data. In this, the earpédrg manually segmented and pre-
aligned. An earprint model is then computed for each ear gjolr) by further aligning the
input earprintimages of that ear using a multi-resolutegistration algorithm and obtaining
the superposition of the aligned prints. The same alignmm&thod is then used in testing to
compute the similarity between a given earprint and a moagirat. Junod et al. report a
2.3% EER for the comparison of simulated crime scene priiitts tive reference prints and
a 0.5% EER for the comparison of reference earprints. Thay rdport hitlist results. For
reference print comparisons, in over 99% of cases the traelmsin the top three positions
of the list and for the comparisons of simulated crime sceim@with the reference prints
88% of cases have the true match in the top three positioasskssing the reproducibility of
these results for real cases one should keep in mind thatethe-database is collected by
applying afunctional forceby the print donor simulating a listening effort of a burglahis
minimizes the variability of pressure deformation in thiéedent prints from the same donor.
However, in real cases it is not practical to expect of a nooperative suspect to apply a
functional force Further evaluation of real case samples is required.
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1.4.2 From earprints to ear images

The effects of deformation due to pressure and the fact traesomponents are missing,
potentially, causes large intra-individual variation argrints, resulting in a more challenging
recognition problem than ear image recognition. In biomsf2D or 3D images of the ear are
commonly used. These images are traditionally capturedmmralled environments. More
recent methods have looked into improving the robustnes$isecflgorithms and easing the
controls over the image capture procedures. With rapidoyepent of surveillance cameras,
the number of crimes recorded on surveillance footage @ glewing fast. These footage
are often characterized by poor quality while effects susleclusion, shadows and noise
are commonplace. With further development of biometricrapphes towards more robust
methods on one hand and the increase of crime scene sumgeillaotage, which calls for
methods of recognition at a distance, on the other, it ajgpihat the two fields are rapidly
moving towards each other.

Compared to earprints, the use of ear images for identificdtas been explored and
examined more frequently. Abaza et al. (2013) provided afligvailable ear image databases
which can be used for ear biometric studies. Some of the nemstronly used among these
databases are: the UND database (Yan and Bowyer 2005) whikthdes 2D and 3D images
of 415 individuals; XM2VTS database (Messer et al. 1999) masing of 2D ear images of
295 subijects taken in four time-lapsed sessions; and USTabdse (UST 2005) with 500
subjects and with pose variation and partial occlusion.

The automatic recognition of ear images removes the ogeb#s, and so long as the
probe images are comparable to the training and validatimegés in terms of overall
quality, resolution, occlusion, illumination and poseiations the error rates reported for
an algorithm are a good estimate of the reliability of thealhm’s predictions for new data.
In this, the size of the validation set compared to the sizgoténtial candidate set is also a
factor which needs to be considered. However, determiiagequired size of the training
and validation sets for each recognition problem is an opgstipn. It should also be noted
that these methods are often complex and unintuitive. Gfismot possible to point out the
differences and similarities between two ear images eXplid his is unfortunate as such
descriptions can be useful for the jury.

Ear biometrics methods

lannarelli (1989) proposed a method based on 12 measurgrnakan between a number
of landmark points on an ear image. These landmark pointe wetermined manually.
An automated method based on similar measurements woultaply rely on accurate
positioning and segmentation of the landmarks. This is dleging task to perform
automatically. On the other hand, an automatic analysisaofptes can capture a more
detailed signature, describing the sample, one which map@wiable to obtain manually.
Also, there is the obvious benefit of being able to automiyisaarch within a large dataset
of samples. It is worth noting here that even the same eardvappear different, albeit
slightly, in different images. Identification is possiblden the intra-individual variations
are smaller than the inter-individual variations. In othesrds, identification is possible
when the samples from the same individual are more similagatch other than to the
samples from other individuals. Also note that in biometritie focus is to design the most
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Figure 1.4 From left to right: the lannarelli’'s manual measurement system; Barge Burgers’
adjacency graph; Hurley et al.s’ force field; Arbab-Zavar and Nsxieypoints; and Yan and Bowyers’
3D model.

effective and robust algorithms to perform identificatidime experimental evaluation of a
biometrics technique offers the error rates associatduthit specific algorithm performing
identification based on a particular biometric trait. Netibat this is not the same as the error
rates pertaining to a biometric trait. In biometrics, theerates are always associated with
the algorithms and no upper limit is envisaged for the regaynperformance of a specific
biometric trait.

One of the first automatic ear biometric algorithms was thiced by Burge and Burger
(1998). They modelled each individual ear with an adjacegreyph which was calculated
from a Voronoi diagram of the ear curves. However, they dit provide an analysis of
biometric potential. Hurley et al. (2005) used force fieldttee extraction to map the ear to
an energy field which highlightgotential wellsandpotential channelas features achieving
a recognition rate of 99.2% on a dataset of 252 images fromlgj@sts. Naseem et al. (2008)
have proposed the use of sparse representation, followgrapccessful application in face
recognition. Arbab-Zavar and Nixon (2011) proposed a gaatsed model approach which
was guided by the biological cues as to the independent gigttie external ear morphology.
The ear model was derived by a stochastic clustering on afsstate invariant features
of a training set. The model description was extended by aelgtbased analysis with a
specific aim of capturing information in the ear's boundaryctures. A recognition rate of
97.4% was achieved using this method on a dataset of 458 grfag® 150 individuals.
Statistical methods such as principal component analy&BAj, independent component
analysis (ICA) and linear discriminant analysis (LDA) halso been used in ear biometrics
(Chang et al. 2003; Hurley et al. 2005; Zhang et al. 2005; ghand Jia 2007). These
statistical methods can obtain satisfactory results irtrotiad environments. However they
have almost no invariance properties, thus they rely on tigiiaition and pre-processing
stages to window and align the data.

The 3D structure of the ear has also been exploited, and gsudts have been obtained
(Chen and Bhanu 2007; Passalis et al. 2007; Yan and BowyeFf)20@n and Bowyer
(2007) captured and segmented the 3D ear images and usativteClosest Point (ICP)
registration to achieve a 97.8% recognition rate on a datab&415 individuals. Chen and
Bhanu (2007) proposed a 3D ear detection and recogniticersysJsing a local surface
descriptor and ICP for recognition, they reported recagnitates of 96.8% and 96.4% on
two different data sets. Although using 3D can improve thégpmance, using 2D images
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is consistent with deployment in surveillance or other pfaimage scenarios. Figure 1.4
shows the lannarelli's manual measurements as well as BungjBurgers’ adjacency graph,
Hurley et al.s’ force field, Arbab-Zavar and Nixons’ keypisiand Yan and Bowyers’ 3D

model. Hurley et al. (2008) described the steps requirethfiément a simple PCA-based
ear biometric algorithm. A survey of ear biometrics has besently provided by Abaza et
al. (2013).

Are ear biometrics methods robust?

One of the main advantages of ear biometrics is that redognitay be made at a distance,
such as in surveillance videos. The images captured by @ilance system are generally
of poor quality; they might be partially occluded; the posigm not be the most desired
one for identification; while poor illumination and shadoway also deter the image quality.
Therefore, the automatic processing of such images rexjtiecsuse of robust methods.

Bustard and Nixon (2010b) pointed out that, presently, deoto obtain good recognition
rates in the area of ear biometrics it is required that thepdesrbe captured under controlled
conditions. Moving toward an unconstrained ear recogmitieethod was the main goal of
(Bustard and Nixon 2010b). The proposed method includegjiatration which computes
a homography transform between the probe and gallery imagjeg scale-invariant feature
transform (SIFT) point matches. In recognition, a pixebéuh distance measure is used to
compare the registered and normalized images. The rolssstfieche method is then tested
in presence of pose variation, occlusion, backgroundetiutesolution, and noise. It has
been shown that this method can handle pose variations af #13° and occlusions of up
to 18%, while also showing good robustness properties iotther tested cases.

Model-based methods are generally more equipped to haoile and occlusion. Using a
localized description is another way of increasing robess$rio occlusion. Inevitably, some of
the information will be lost as a result of occlusion. Howewther measurements can also be
affected by the change in the overall appearance. It is tinessurements which a localized
approach can keep from being spoiled. Arbab-Zavar and N{26i1) demonstrated the
performance advantages of their hybrid method, includipgrés-based model extended by
a wavelet-based analysis capturing information in the lransidary structures, in occlusion.
In this, they have compared the performance of their methttdawobust PCA (RPCA) as
a representative of holistic methods. Figure 1.5 showsedhelts of this comparison. On test
set A, the hybrid method performs better than RPCA for as nascB0% of occlusion. The
results on test set C exhibit the degrading effect of lesgrate registration, which is obtained
automatically, on RPCA. In contrast, the hybrid classifaramaintains good performance,
and clearly outperforms RPCA on test set C. Test set C is atge phallenging than test set
A in terms of number of individuals and overall image qualityan et al. (2010) proposed
a localized approach with high redundancy between the ldestriptions. They generated
a set of 28 overlapping sub-windows for each image and usigghlmeurhood-preserving
embedding to extract the features for each sub-window.dagmeition, a weighted majority
voting is used for fusion at decision level.

3D ear images have been used to overcome the difficultiesuater@d with variations
in pose and lighting. Various recognition algorithms haeetb proposed (Chen and Bhanu
2007; Yan and Bowyer 2007) demonstrating high recognitierigpmances. However, range
scanners are required to capture the 3D images. Other netlawd been proposed to extract
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Figure 1.5 The hybrid classifier versus RPCA in occlusion on testsets A and C (frdmabAZavar
and Nixon (2011)).

the 3D information of the ear for recognition using a set ofigiages from different poses.
Shape from shading (Cadavid and Abdel-Mottaleb 2008) andSplihe pose manifold
(Zhang and Liu 2008) are two examples of these methods. &irulthe methods which
work with range data, the data requirements of these metiledsestricts their viability for
surveillance scenarios. In a more promising approach,a@distind Nixon (2010a) proposed
a new technique for constructing a 3D morphable model ofdhke profile and the ear using
a single image.

1.4.3 Ear morphology features

Perhaps one of the main questions which is encountered ifiotkasic identification is
this question: “is there enough information available tokena positive identification?”.
Hoogstrate et al. (2001) asked a similar question from twaugs of operators: forensic
experts and laymen. For this, multiple video captures usiagdard surveillance equipment
were made from 22 subjects under different conditions. Akmaas overlaid on the
video showing only the ear part. Each participant was ptesewith 40 sets of paired
videos and for each pair they were asked: (1) Is there enovfgmation in the video for
individualization or exclusion; and (2) Are the individaah the two videos the same person?
Hoogstrate et al. derived two main conclusions from theregiments: (1) the quality of the
video influences the participant’s decision of whether thaye enough information; and (2)
the forensically trained persons were able to determinbeay thad sufficient information.
Note that the dataset for this study was small and the expetimas conducted under closed
set assumption. Albeit, this raises an important questiovhich are the ear’s discriminating
features and how the performance accuracy and confidersls e affected when different
parts of the ear are not visible.

The significance of various parts of the ear for identificath@s been rarely studied in
the field of ear biometrics. In our earlier work (Arbab-Zaward Nixon 2011), we have
looked into identifying the various parts of the ear morpigyl and investigate as to their
discriminatory powers. This study was guided by accountsmbryonic development of
the external ear. The study of ear embryology reveals treexternal ear is the result of
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Figure 1.6 The six auricular hillocks and their location in a human embryo.

6 nodules whose unequal growth and coalescence give thesfiapke of the external ear.
A conclusion was drawn that there should be a limited infdromaredundancy between
these parts since they are thought to be developed indepindeherefore missing the
information of any of these parts could not be fully recodeby the other visible parts.
Some of the information content is thereby lost and our cédipato perform identification
using this data is weakened.

The separability and variability of ear parts was invegddavia two very different
approaches. The first approach was based on statisticaisemaf shape within a dataset
of ears. In this, a part based model was learned from a datdssr images. The parts
are arbitrary scaled circular neighbourhoods, called #hgéints, which are detected and
described via the SIFT descriptor (Lowe 2004). A parts-basedel was then built via
clustering of the detected keypoints in different imagese Becond approach was based
on embryonic development of the external ear and the emtngieal understanding of ear
abnormalities. In this, cues from the ear abnormalitiesewesed to hypothesise as to the
independent parts of the ear. It was considered that the waostble parts of the ear are
those which are most frequently the site of ear abnormslifidhese parts also provide a
valuable set of features that can be used to communicatguwidis.

The initial appearance of the external ear in the human eonlsryn the shape of six
individual hillocks occurring in the fifth week of embryoniife (Streeter 1922). Figure
1.6 shows a drawing of an embryo with its auricular hillocksnbered. It is the unequal
growth and coalescence of these six hillocks that giveshhpes of the definitive auricle in
a newborn baby. This is the reason for our interest in ear yoidigy — the premise of local
and independent structures within the auricle is appe#tiige classification purpose.

Streeter (1922), who provided one of the most extensive watsoof external ear
embryology, argued against the individual development hef &uricular hillocks and
suggested that the external ear comes into existence ataah &md continuous structure
which elaborates into its final form. However there is a widlege of defects which disturb
the smooth continuity of the auricle. These can be best thestias the failure of fusion
or the lack of correct alignment of the various hillocks, ahifurther insists on the role
of separate structures in the formation of the definitiveicéinDavis 1987; Hunter and
Yotsuyanagi 2005). Some other malformations can be desteb excessive growth beyond,
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or, underdevelopment beneath the thresholds of normaligreby the site of such anomaly
is also where a considerable variation is introduced; inigkely that an abnormality will be
observed in locations of more constant structures.

The findings of (Arbab-Zavar and Nixon 2011) have been readshere with an eye
towards earprint identification and the missing parts. Fégd.7 shows the common
terminology of the external ear.

Inferior crus of antihelix and the crus of helix

According to Streeter, the inferior crus of antihelix and tus of helix are the least variant
parts of the ear. Seemingly contradictory, these two paetsletected as the most significant
parts of the parts-based model. It was discussed in (ArlaatasZand Nixon 2011) that this
is caused by the models varying capability in detecting thesp Automatic detection of
parts is a task which precedes the comparison of parts aredhdot all the parts are
detected in every ear image. The inferior crus of antihetidt the crus of helix are the most
frequently and accurately detected parts in different,eargnuch so that they become the
most significant parts of the model for recognition. It is bilpesized that the comparative
consistency of these parts helps with learning them via steting method. We suspect that
a manual labelling of the parts, presuming that such latfgetian be achieved accurately and
consistently, would reveal a slightly different rankingimiportant parts. In the next section,
we will describe how the inadequate representation of teglk antihelix in the parts model
have motivated Arbab-Zavar and Nixon (2011) to extend tlit@alrparts-based model and
build a hybrid model. This emphasizes the importance of simgpthe right algorithm for
ear image, ear print and in fact any biometric comparisoms@ering the earprints, it can
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perhaps be considered fortunate that two parts which ofbemotl leave a print are actually
the least varying parts of the ear. Thus their absence isdagsficant.

Helix, antihelix and scapha

The outer ear rim, the helix, may be attributed to as many eeetbut of six embryonic
hillocks. Ascending helix, the portion of the helix immeigily attached to the crus of helix,
is assigned to an individual hillock by Streeter (1922) antiky1995). An anomaly called
thelop earis the product of the absence of the ascending helix, whiledht of the parts have
their normal shape (Hunter and Yotsuyanagi 2005). Two adleéects exhibit conspicuous
clefts separating the ascending helix from the rest of thHiedlecomponents on either side
(Davis 1987; Park and Roh 1999). The ascending helix is ad¢ected by the parts model
and is the third most significant part of the model. As for thstrof the helix, there are
two major hypotheses regarding its formation: suggestddibythe upper and lower helical
components, including the helix and antihelix, are deriveth hillocks 4 and 5 respectively;
while Streeter believes that a single hillock (5th) gave testhe helix and the antihelix is the
product of hillock 4. In accordance with the first hypothesie upper helical region appears
to be subject to considerable growth variations. Cryptatid Satyr ear are two anomalies
exhibiting underdevelopment of this region (Hunter andsMgtinagi 2005). The upper and
lower helical regions have been detected as separate péte parts model and are both
among the 7 most significant parts of the model. On the othed hthe emergence of the
scapha, the concave surface of free portion lying betwesaritihelix and the helix, provides
a margin and allows the helix and antihelix to have some degféndependent development
which is better described by Streeter’s hypothesis. Théheli®, as mentioned above is
subject to variations of the upper helical region, whilelthveer parts are more constant. Due
to the limitation of the circular image descriptor which whe basis local area unit of the
model parts, the elongated parts such as the helix and elitivhere not captured adequately.
A specialized representation and method was then appliedpture the variations of the
two elongated structures of the helix and anti-helix selplraA recognition rate of 91.9%
is achieved with helix and antihelix dominant represeatatin a dataset with 458 images
from 150 individuals (Arbab-Zavar and Nixon 2011). In tHig fpart model obtains an 89.1%
recognition rate. The combination of these two methodsckvis called the hybrid model,
yields a significant improvement with a 97.4% recognitioterand further suggests that
independent information content have been captured by ttves methods. Also note that
the helix and antihelix dominate the earprint mark. Howetleg upper antihelix region of
the superior and the inferior cruses of antihelix are comgnonissing in these prints.

The lobe

Lobe is one of the only parts of the ear which lends itself tegarical classification. Three
types of lobe are: well-formed; attached; and no lobe. Irerigics, ear lobes are used in
international standards for identification in DisastertMicldentification (DVI) 2008. Note
also that ear piercing, which is a semi-permanent body nuadiifin, was reported by Abbas
et al. to occur in 46% of their population sample of 400 ad(#tkbas and Rutty 2005).
They reported that, in about 95% of the cases with ear pigreire piercing occurs on the
lobe. They noted that the presence or absence of such mjetself is a useful attribute
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for forensic identification. The ear lobe is the only partlod ar which is composed of fat
rather than cartilage. This part continues to grow and chahgpe as the person grows older
(Meijerman 2006). Albeit, it could exhibit a variety of sheegy and in a database with a small
time lapse between the captured samples it can be compyatigcriminant.

Tragus and antitragus

In Otocephaly, which is a syndrome accompanied by an anoofalye auricle, the tragus
is missing. Other tragal anomalies may exhibit extensigrduplications of the tragus flesh
(Hunter and Yotsuyanagi 2005), indicating a rich variationhe shape of this component.
In contrast, antitragus has been little discussed in thiysesof ear anomalies. Tragus and
antitragus are also commonly found on earprints.

Concha

Conchais the part of the external ear which will almost éelgdoe missing from the earprint.

The depth of this cavity is the main feature of this compon&né Mozart ear is characterized
by its shallow concha and it was also discussed that thereasralation between the depth
of the concha and the sensitivity of the ear to hearing sauddwever, this feature is also
absent in 2D ear images.

1.4.4 Summary

In the second case study, we have examined the applicatitmeeodmerging field of ear
biometrics for forensic identification. Human ear is an lasatender for such a study since
it is available both in images at a distance and in latent@riBarprints and ear images are
considered separately as two different representatioearoT he less familiar features of ear,
along with their correlations and variability are also diseed. We have also addressed the
guestion of admissibility in court.

Ear is an important emerging biometric. There is a clear egbien that ears do not change
in structure from cradle to grave, only in size (except witihggcal intervention). There is a
known taxonomy for their description and it is accepted ffeadple can be identified by their
ears. There is a rich variety of approaches for ear biongetnad these are steeped in pattern
recognition and computer vision. These show that using leasssimilar performance to
other biometrics, using similar methods, though the reseigras yet not so deep or popular
as that for the more established biometrics. As such, earshes be deployed in scene of
crime analysis where images of an ear are available, andathkas actually already been
deployed in this way. The notion that people can be recodrfigen a latent earprint has a
more chequered history. This arises when a subject’s eaesnadntact with a surface, say
for listening in purposes. Naturally, there are problemthwiage quality as there are for
latent fingerprints and the problem is confounded by theradesef modelling of the change
in print with ear deformation, though a combination of 3D @hanalysis (which exists for
ears) with a 3D plastic membrane could offer understandintyis direction. As it stands,
the ear clearly has the potential to be one of the stock of eidos in digital forensics both
for imagery and for recorded prints - and given its provemidieation capability it appears
well worthy of future study in this respect.
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1.5 Conclusions

Given that biometrics concerns automatically establghentity and forensics requires
confirmation of identity, it is perhaps surprising that theliision of biometrics is not further
advanced within the forensic community. For this to be adde agreement standards for
acceptability needed to be reached and these are relatigelyo biometrics. Given its long
history, it is no surprise there is a richer literature inntiying subjects from fingerprints
and fingerprint biometrics is becoming well establisheddtent fingerprint recognition. The
translation of other biometrics (such as face, gait, eacejas considerably less advanced.

This chapter has outlined the historical connections betvi®@ometrics and forensics and
examined the application of face and ear biometrics fonfsieidentification in detail. Given
that face and ear are in different stages of deployment enfics, various aspects of this
deployment were discussed. The examination of ear forgnsssibilities gave rise to the
early questions of admissibility, mainly regarding the o$earprints. The morphological
features of the ear were also examined in detail. Such itsagle essential for evaluation of
partially occluded data and further influential when comiuating the findings of biometric
comparisons to juries. More advanced in the forensic fielmhumal forensic face recognition
methods and the deployment of automatic techniques wergtied. The challenges
looming over both face and ear applications in forensicsniypaue to poor data quality
which is common of forensic data, and the current state afmaatic recognition performance
and robustness were examined. This chapter has aimed atcclibe gap between the
forensics and biometrics experts understandings of thatifdmtion task. Although further
study is needed within various fields of biometrics so thaythre equipped for inclusion
within forensics, given the prospects they offer this appeaell worthy of the effort.
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