Fixation and Saccade based Face Recognition from Single Image per Person with Various Occlusions and Expressions

Xingjie Wei and Chang-Tsun Li

Department of Computer Science, University of Warwick, UK

x.wei@warwick.ac.uk

http://warwick.ac.uk/xwei

Unconstrained face recognition

- Partial occlusions and expression changes
- Intra-class variations > inter-class variations
- →→ poor recognition performance!

Single sample per person problem

- Real-world scenarios
 - law enforcement, driver license or passport card identification
- Learning-based method
 - will suffer because the training samples are very limited

Our method

- Does not require a training phase
- Matches faces by simulating the mechanism of fixations and saccades in human visual perception
- Is robust to to local deformations of faces

Face recognition by humans

Fixation

 Saccade: quickly jump between fixations

Three key observations

- Humans scan a series of fixations instead of the whole face

 Random sampling
 - not all local areas are helpful due to occlusion and expression variations
- Law of large numbers
 - one fixation not sufficient
 - a large field of random selections: √
- The spatial relationship between facial features is very important

6

Framework

1, Simulating fixations and saccades by random sampling

Framework

2, Dynamic Image-to-Class Warping

- 1 2 3 4 5 6 7 8 9
- Each fixation is represented as a sequence
- Consider the facial order information

X.Wei, C.-T. Li, and Y. Hu. *Face recognition with occlusion using dynamic image-to-class warping (DICW)*. IEEE International Conference on Automatic Face and Gesture Recognition (FG'13), 2013

8

Framework

3, Majority voting for fixations

Majority voting for fixations

- Each fixation has the possibilities to classify the face correctly or wrongly
- Correct recognition rate = probability of the consensus being correct
- Combined decision is wrong only if a majority of the fixations votes are wrong and they all make the <u>same</u> misclassification

- Randomly located occlusions
 - FRGC database, 100 subjects, 2 sessions
 - Single gallery image per person
 - Random occlusion: 0%~50%

Randomly located occlusions

Table 1. Recog. rates (%) on the FRGC database

Occlusion	0%	10%	20%	30%	40%	50%
LSVM[4]	69.5	65.8	57.3	36.8	36.8	22.3
SRC-block[29]	65.8	55.8	47.8	39.8	32.5	22.8
DICW[27]	79.3	77.8	77.3	72.8	70.8	64.5
Ours	84.2	82.4	80.3	78.1	73.2	69.6

- Real disguise and expressions
- AR database, 100 subjects, 2 sessions
 - Gallery: neural expression face from session 1

Table 2. Rec. rates (%) on the AR database (occlusion)

Method -	Session 1		Session 2		Ανα	M/H ¹
	Sung.	Scarf	arf Sung. Scarf		Avg.	1V1/11
Stringface[5]	88.0	96.0	76.0	88.0	87.0	No
FARO[6]	90.0	85.0	-	-	87.5	No
SRC-block 29	86.0	87.0	49.0	70.0	73.0	No
PD[22]	98.0	90.0	-	-	94.0	No
SOM[23]	97.0	95.0	60.0	52.0	76.0	No
CTSDP[8]	-	-	-	-	90.6	No
DICW[27]	99.0	97.0	93.0	81.0	92.5	No
PWCM _{0.5} [11]	97.0	94.0	72.0	71.0	83.5	Yes
CTSDP[8]	-	-	-	-	98.5	Yes
Ours	99.0	98.7	93.7	94.9	96.6	No

¹ Occlusion mask/threshold training required

Table 3. Rec. rate (%) on the AR database (expression)

Method -	Session 1			Session 2			Ανα
	Sm.	An.	Sc.	Sm.	An.	Sc.	Avg.
Stringface 5	87.5	87.5	25.9	-	-	-	67.0
FARO[6]	96.0	-	60.0	-	-	-	78.0
SRC[29]	98.0	89.0	55.0	79.0	78.0	31.0	71.7
PD[22]	100.0	97.0	93.0	88.0	86.0	63.0	87.8
SOM[23]	100.0	98.0	88.0	88.0	90.0	64.0	88.0
DMMA[16]	99.0	93.0	69.0	85.0	79.0	45.0	78.3
DICW[27]	100.0	99.0	84.0	91.0	92.0	44.0	85.0
CTSDP[8]	100.0	100.0	95.5	98.2	99.1	86.4	96.5
Ours	100.0	100.0	91.4	94.5	98.0	58.6	90.4

lower computational complexity than CTSDP

Thank you

Questions?

- Xingjie Wei
- x.wei@warwick.ac.uk
- http://warwick.ac.uk/xwei
- Department of Computer Science, University of Warwick, UK