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Face 

• People love faces ! 

– Biological nature 

– Sensitive to the face pattern 
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A house with a 

Hitler face 



Face Recognition 

• Uncontrolled conditions: large changes in 

pose, illumination, expression and occlusion, 

aging… Still challenging  
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Motivation 

• Face recognition in real-world environments 

often has to confront with uncontrolled and 

uncooperative conditions 

– illumination changes, occlusion 

• Uncontrolled variations are usually coupled 

• Less work focuses on simultaneously 

handling them 
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Our Method 

• Our work deals with the illumination changes 

and occlusion simultaneously considering 

structured sparsity 

Sparse Representation 

 flat sparsity 

represents a test image using minimal number of training images 

from all classes 

represents a test image using the minimal number of clusters 
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Our Method 

• Our work deals with the illumination changes 

and occlusion simultaneously considering 

structured sparsity aided with:  
– Structural occlusion dictionary: better modelling 

contiguous occlusion 

 

contiguous occlusion also forms a cluster structure 
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Our Method 

• Our work deals with the illumination changes 

and occlusion simultaneously considering 

structured sparsity aided with:  
– Structural occlusion dictionary: better modelling 

contiguous occlusion 

– WLD feature: robust to illumination changes, 

remove shadows 

 

Inspired by the psychophysical 

Weber’s Law 



Sparse Representation 
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• Models a test image as a linear 

combination of training images  

– Using minimal number of training images 
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Sparse Representation 

• Involves training images from all classes 

– Optimal for reconstruction but not 

necessary for classification 
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Using the same 

number of base 

vectors 
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Our Method 

• Structured Sparsity 

– Each class form a cluster  
 

cluster structure 
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Our Method 

• Structured Sparsity 

– Represents a test image using the 

minimum number of clusters  
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Sparse Representation 

• Occlusion modelling: identity matrix 

 

 

 

 

 

 

– limitation:                     is able to represent any 

image of size m  
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Our method 

• Contiguous occlusion: the nonzeros entries 

are likely to be spatially continuous, are 

aligned to clusters 
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index of occlusion base vectors 

size: 83*60=4980 



Our method 

• Structural occlusion dictionary 

– uses the cluster occlusion dictionary to 

replace the identity matrix I 
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Our Method 

• Extreme illumination + occlusion: 

– coupled occlusion takes up a large ratio of 

the image 

– not “sparse” error 
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Our Method 

• A different view: extract relevant features 

that reduce the difference   

• Using WLD feature 
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Filtering 
Original image  WLD feature 

 Maintain most salient 

facial features 

 Insensitive to 

illumination changes 

 Can correct shadow 

effects 

 

Chen et al, Wld: A robust local image descriptor, PAMI, 2010 



Illustrative Example 
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Test image  

Estimated 

occlusion 

Reconstruction 

Sparse coefficients 

Residuals 

Reference 

image  

Sparse coefficients 

Residuals 

Test image  

Estimated 

occlusion 

Reconstruction 

Reference 

image  

belongs 

to class 1 

class 1 



Experiments 
• Synthetic Occlusion with Extreme 

Illumination 

– Extended Yale B database 

– Occlusion levels: 0% ~ 50% of the image 
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Subset 3 

Subset 4 

Subset 5 

Training set Testing set 



Experiments 

• Synthetic Occlusion with Extreme 

Illumination 

– using only the raw pixel intensity as feature  

19 [15] Wright et al, TPAMI, 2009. [17] Zhang et al, ICCV, 2011 



Experiments 

• Synthetic Occlusion with Extreme 

Illumination 

– using WLD feature  
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[15] Wright et al, TPAMI, 2009. [16] Yang et al, ECCV, 2010 



Experiments 

• Synthetic Occlusion with Extreme 

Illumination 

– using WLD feature  
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[15] Wright et al, TPAMI, 2009. [16] Yang et al, ECCV, 2010 



Experiments 

• Disguise with Non-uniform Illumination 

– The AR Database 

– Real occlusion, 2 sessions 
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Training set Testing set 



Experiments 

• Disguise with Non-uniform Illumination 
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Thank you 

• Questions ? 

 

• Xingjie Wei 

• x.wei@warwick.ac.uk 

• http://warwick.ac.uk/xwei  

• Department of Computer Science, University 

of Warwick 
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