Robust Face Recognition under Varying Illumination and Occlusion Considering Structured Sparsity

Xingjie Wei, Chang-Tsun Li and Yongjian Hu Department of Computer Science, University of Warwick

<u>x.wei@warwick.ac.uk</u>

http://warwick.ac.uk/xwei

THE UNIVERSITY OF WARVICK

- People love faces !
 - Biological nature
 - Sensitive to the face pattern

A house with a

Face Recognition

 Uncontrolled conditions: large changes in pose, illumination, expression and occlusion, aging... Still challenging

Motivation

 Face recognition in real-world environments often has to confront with uncontrolled and uncooperative conditions

- illumination changes, occlusion

- Uncontrolled variations are usually coupled
- Less work focuses on simultaneously handling them

 Our work deals with the illumination changes and occlusion simultaneously considering structured sparsity

represents a test image using the minimal number of *clusters*

Sparse Representation

flat sparsity

represents a test image using minimal number of training images from *all classes*

- Our work deals with the illumination changes and occlusion simultaneously considering structured sparsity aided with:
 - Structural occlusion dictionary: better modelling contiguous occlusion

contiguous occlusion also forms a *cluster* structure

- Our work deals with the illumination changes and occlusion simultaneously considering structured sparsity aided with:
 - Structural occlusion dictionary: better modelling contiguous occlusion
 - WLD feature: robust to illumination changes, remove shadows

Inspired by the psychophysical *Weber's Law*

Sparse Representation

- Models a test image as a linear combination of training images
 - Using minimal number of training images

Sparse Representation

- Involves training images from all classes
 - Optimal for reconstruction but not necessary for classification

Structured Sparsity

 Each class form a cluster

10

cluster structure

$$y = X lpha$$

- Structured Sparsity
 - Represents a test image using the minimum number of clusters

WARWICK

Sparse Representation

• Occlusion modelling: identity matrix $\boldsymbol{I} \in \mathbb{R}^{m imes m}$

– limitation: $\mathbf{I} \in \mathbb{R}^{m \times m}$ is able to represent any image of size m

Our method

 Contiguous occlusion: the nonzeros entries are likely to be spatially continuous, are aligned to clusters

Our method

- Structural occlusion dictionary
 - uses the cluster occlusion dictionary to replace the identity matrix /

- Extreme illumination + occlusion:
 - coupled occlusion takes up a large ratio of the image
 - not "sparse" error

- A different view: extract relevant features that reduce the difference
- Using WLD feature
 - Maintain most salient facial features
 - Insensitive to illumination changes
 - ✓ Can correct shadow effects

Original image

 $WLD(p) = \arctan(2)$

WLD feature

16

Chen et al, Wld: A robust local image descriptor, PAMI, 2010

Illustrative Example

- Synthetic Occlusion with Extreme Illumination
 - Extended Yale B database
 - Occlusion levels: 0% ~ 50% of the image

Training set

WARWICK

Testing set

18

- Synthetic Occlusion with Extreme Illumination
 - using only the raw pixel intensity as feature

TABLE I

RECOGNITION RATES (%) ON THE SUBSET 3 OF THE EXTENDED YALE B DATABASE

Occlusion	0%	10%	20%	30%	40%	50%
SR-P[15]	100	100	99.8	98.5	90.3	65.3
CRC-RLS[17]	100	100	95.8	85.7	72.8	59.2
R-CRC[17]	100	100	100	97.1	92.3	82.3
Proposed SSR-P	100	100	100	100	97.8	85.4

[15] Wright et al, TPAMI, 2009. [17] Zhang et al, ICCV, 2011

 Synthetic Occlusion with Extreme Illumination

- using WLD feature

Recognition rates(%) on the Subset 4 and Subset 5 of the Extended Yale B database

	Occlusion	0%	10%	20%	30%	40%	50%
set 4	SR-P[15]	86.3	78.5	70.0	53.2	36.7	28.1
	Proposed SSR-P	97.2	93.4	84.8	68.4	53.4	39.9
qn	SR-G[16]	95.3	88.8	84.2	76.4	66.5	54.7
S	SR-W	99.4	99.6	99.4	99.1	99.1	96.6
	Proposed SSR-W	99.6	99.8	99.4	99.4	99.6	98.1
5	SR-P[15]	37.5	26.9	14.3	9.0	7.9	7.3
set	Proposed SSR-P	42.6	31.6	23.4	15.3	11.5	10.9
qn	SR-G[16]	44.2	31.7	32.0	23.8	21.5	17.5
S	SR-W	98.0	97.5	96.9	96.9	91.9	83.0
	Proposed SSR-W	98.3	98.0	97.3	95.8	95.4	88.6

[15] Wright et al, TPAMI, 2009. [16] Yang et al, ECCV, 2010

 Synthetic Occlusion with Extreme Illumination

- using WLD feature

Recognition rates(%) on the Subset 4 and Subset 5 of the Extended Yale B database

	Occlusion	0%	10%	20%	30%	40%	50%
Subset 4	SR-P[15]	86.3	78.5	70.0	53.2	36.7	28.1
	Proposed SSR-P	97.2	93.4	84.8	68.4	53.4	39.9
	SR-G[16]	95.3	88.8	84.2	76.4	66.5	54.7
	SR-W	99.4	99.6	99.4	99.1	99.1	96.6
	Proposed SSR-W	99.6	99.8	99.4	99.4	99.6	98.1
5	SR-P[15]	37.5	26.9	14.3	9.0	7.9	7.3
Subset	Proposed SSR-P	42.6	31.6	23.4	15.3	11.5	10.9
	SR-G[16]	44.2	31.7	32.0	23.8	21.5	17.5
	SR-W	98.0	97.5	96.9	96.9	91.9	83.0
	Proposed SSR-W	98.3	98.0	97.3	95.8	95.4	88.6

[15] Wright et al, TPAMI, 2009. [16] Yang et al, ECCV, 2010

- Disguise with Non-uniform Illumination
 - The AR Database
 - Real occlusion, 2 sessions

Training set

WARWICK

Testing set

Disguise with Non-uniform Illumination

TABLE III RECOGNITION RATES (%) ON THE AR DATABASE

	Sunglasses	Scarves
SR-P[15]	42.5	29.8
Proposed SSR-P	43.5	31.8
SR-G[16]	74.8	76.0
SR-W	85.0	89.5
Proposed SSR-W	87.5	92.0

Thank you

Questions ?

- Xingjie Wei
- <u>x.wei@warwick.ac.uk</u>
- http://warwick.ac.uk/xwei
- Department of Computer Science, University of Warwick

