Robust Face Recognition with Occlusions in both Reference and Query Images

Xingjie Wei, Chang-Tsun Li, Yongjian Hu

Department of Computer Science,

University of Warwick

x.wei@warwick.ac.uk

http://warwick.ac.uk/xwei

Outline

- Face recognition with occlusions
- Current methods
- Three occlusion cases
- Our methods
- Experimental results

Face recognition with occlusions

- Intra-class variations > inter-class variations
- Causes imprecise registration of faces

→→ poor recognition performance!

Face recognition with occlusions

- Why is it so difficult?
- No prior knowledge of occlusion
- location, size, shape, texture -- unpredictable!

Current methods

Reconstruction based methods

[Wright et al. PAMI09, Yang et al. ECCV'10, Zhang et al. ICCV'11]

- An occluded probe image is represented as a linearly combination of unoccluded gallery images
- The probe image is assigned to the class with the minimal reconstruction error

Assume the gallery/training images are *clean*

Three occlusion cases

Table 1. Three typical occlusion cases in the real world.

	Gallery	Probe	Scenarios		
Uvs.O:	Unoccluded	Occluded	Access control,		
			boarder check		
Ovs.U:	Occluded	Unoccluded	Suspect detection,		
Ovs.O:	Occluded	Occluded	shoplifter recognition		

Current methods

Very limited work considers the existence of occlusions in both gallery and probe sets

- [Jia et al. FG'08,CVPR'09]
 - Proposed a reconstruction based method in, as well as an improved SVM

Depend on an occlusion mask trained through the use of skin colour

- [Chen et al. CVPR'12]
 - Uses the low-rank matrix recovery to remove the occlusions

Requires faces to be well registered in advance

WARWICK

- Dynamic Image-to-Class Warping
 - An image

 a patch sequence
 - Matching

 the Image-to-Class distance
 - ✓ No occlusion detection
 - ✓ No training phase

- Face representation
 - Natural order: forehead, eyes, nose and mouth to chin does not change despite occlusion or imprecise registration

9

- Image-to-Class distance
 - from a probe sequence to all the gallery sequences of an enrolled class
 - each patch in the probe sequence can be matched to a patch from different gallery sequences

of a given class

A probe sequence

Warping path: $W = \{w_1, w_2, ..., w_T\}$

$$w_t : (m_t, n_t, k_t)$$

 $\in \{1, 2, ..., M\} \times \{1, 2, ..., N\} \times \{1, 2, ..., K\}$

(4,3,2) Two gallery sequences

of a given class

$$\max(M, N) \leqslant T \leqslant M + N - 1$$

11

Warping path:
$$W = \{w_1, w_2, ..., w_T\}$$

 $w_t : (m_t, n_t, k_t)$

- Constraints:
 - Boundary $m_1 = n_1 = 1, m_T = M, n_T = N$
 - Continuity $m_t m_{t-1} \le 1, n_t n_{t-1} \le 1$
 - Monotonicity $m_{t-1} \leqslant m_t, n_{t-1} \leqslant n_t$
 - Window constraint: $|m_t n_t| \leq l$

Maintains the order of facial features

Two gallery sequences of a given class

Local cost

$$C_{w_t} = C_{m_t, n_t, k_t} = \| \boldsymbol{p}_m - \boldsymbol{g}_{kn} \|_2$$

Optimal overall cost

$$DICW(\boldsymbol{P}, \boldsymbol{G}) = \min_{w_t \in \boldsymbol{W}} \sum_{t=1}^{T} C_{w_t}$$

the optimal W

- Why does it work?
 - Tries every possible warping path and select the one with minimal overall cost
 - Exploits the information from different gallery images and reduce the effect of occlusions

14

$$\begin{array}{l} \textit{Dynamic} \\ \textit{Programming (DP)} \end{array} D_{m,n,k} = \min \left(\begin{array}{l} D_{\{(m-1,n-1)\} \times \{1,2,...,K\}} \\ D_{\{(m-1,n)\} \times \{1,2,...,K\}} \\ D_{\{(m,n-1)\} \times \{1,2,...,K\}} \end{array} \right) + C_{m,n,k} \end{array}$$

$$DICW(\boldsymbol{P},\boldsymbol{G}) = \min_{w_t \in \boldsymbol{W}} \sum_{t=1}^{T} C_{w_t}$$

$$DICW(\boldsymbol{P},\boldsymbol{G}) = \min_{k \in \{1,2,...,K\}} \boldsymbol{D}_{M,N,k}$$

Experiments

- The FRGC database
 - 44,832 images with different illuminations and expressions, 100 subjects selected
- The AR database
 - >4000 images with real disguise, 100 subjects selected
- Realistic images
 - >2000 frontal view faces of strangers on the streets, 80 subjects selected

Synthetic occlusions

- Uvs.O
 - Gallery
 - Probe

Block size: 0%~50% of the image

- Ovs.U
 - Gallery
 - Probe

Block location:

random and unknown to the algorithm

- Ovs.O
 - Gallery
 - Probe

Synthetic occlusions

Ovs.O

18

Real disguises

- Uvs.O
 - Gallery
 - Probe

- Ovs.U
 - Gallery
 - Probe
- Ovs.O
 - 1. Gallery
 - 2. Gallery

Real disguises

Table 2. Recognition rates (%) on the AR database

		3 T3 T	an.c	DELL	MANA	0
		NN	SRC	DTW	NBNN	Ours
Uvs.O: Gallery-unoccluded						
Probe -	sunglasses	69.5	87.0	99.0	96.5	99.5
	scarf	11.5	59.5	96.5	95.5	98.0
Ovs.U: Gallery-occluded						
Probe	unoccluded	42.6	85.7	87.7	94.4	94.6
Ovs.O: Gallery-occluded						
Probe -	sunglasses	5.5	18.0	55.0	49.0	56.0
	scarf	5.5	10.0	61.5	52.5	55.5

Realistic images

Table 3. Recognition rates (%) using the realistic images

NN	SRC	DTW	NBNN	Ours
62.5	69.4	64.4	68.1	75.6

Thank you

Questions?

- Xingjie Wei
- x.wei@warwick.ac.uk
- http://warwick.ac.uk/xwei
- Department of Computer Science, University of Warwick